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When facing data scarcity, can large vision-
language exploit unlabeled images to self-improve?

•Apply self-training to visual question answering.

•Treat visual question generation as a direct image-conditional text-
generation task.

Key Ideas

• Increased performance on data scarce VQA tasks.

•Resistance to adversarial questions, reduced shortcut learning, and increased consistency of answers.

• Improved domain generalization.

•Reduced catastrophic forgetting of numerical reasoning.

Results



What happens when you want to apply your vision-
language model to a specific task?

Web-scale Pretraining 
(100m+ pairs)

Task-specific Post-Training 
(VQAv2+VG, 2M pairs)

Finetuning

(A-OKVQA, ~10k pairs)



Finetuning on small datasets is problematic.

Source: VQAv2

•Question types can be very different.

• Images are often from a different domain.

•Heavily overparameterized model on very small dataset (200m+ vs <10k datapoint).

•Not enough data to learn the task well.

•Catastrophic forgetting of already learned skills (e.g. numerical reasoning).

Q: What was the name of the 
first cloned type of this animal?


A: Dolly



Can we take advantage of unlabeled images?
•Acquiring more annotations for complex tasks is expensive and time consuming.

•But unlabeled images are cheap and plentiful.

Self-training looks promising…
•Train on self-predictions on unlabeled images.

•Shown to be successful in object detection and image classification.



How can we apply self-training in VQA?
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•Challenge 1: Task of student and teacher is identical in standard self-training, but 
teacher and student have different tasks in VQA self-training.


•Challenge 2: Our pseudo labels are visual questions, but approaches for visual 
question generation require dense annotations to generate questions.

•Existing paradigms can’t work with unlabeled images!



SelTDA: Self-Taught Data Augmentation
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Legend

•Modular (no specialized architectures needed).

•Straightforward treatment of pseudolabeling as text generation.

•Offline and decoupled from training.

Selling Points



Images Questions

Labeled Unlabeled Real Synthetic Total Multiplier Accuracy % Gain Questions/Image

17,000 0 17,000 0 17,000 1x (baseline) 57.11 N/A
17,000 0 17,000 17,000 34,000 2x 57.85 +0.74 1 / 1
17,000 0 17,000 34,000 51,000 3x 60.01 +2.90 2 / 1
17,000 0 17,000 51,000 68,000 4x 59.73 +2.62 3 / 1

17,000 0 17,000 0 17k 1x (baseline) 57.11 N/A
17,000 8,500 17,000 17,000 34,000 2x 60.69 +3.57 2 / 1
17,000 17,000 17,000 34,000 51,000 3x 62.09 +4.98 2 / 1
17,000 25,500 17,000 51,000 68,000 4x 61.31 +4.20 2 / 1

•On a data-scarce task (A-OKVQA).

•Can work even without extra images, just by generating more questions.

•Not overly sensitive to hyperparameters.

•There’s a saturation point.

Self-Taught Data Augmentation Improves Performance



•Adversarial Questions (AdVQA)

•Multimodal Shortcut Learning (VQA Counterexamples)

•Self-Consistency (VQA Rephrasings)

Self-Taught Data Augmentation Improves Robustness

# of Real + Synthetic QA Pairs Robustness Test Sets

Real Synthetic Multiplier AdVQA VQA-CE VQA-Rephrasings Avg. % Increase Robustness Total

(a) 17,000 0 ⇥1 31.06 51.43 65.88 0 148.37
(b) 17,000 2,000 ⇥1.1 37.09 52.96 67.94 +3.21 157.99
(c) 17,000 4,500 ⇥1.3 36.99 53.15 67.98 +3.25 158.12
(d) 17,000 8,000 ⇥1.5 37.34 53.33 67.57 +3.29 158.24
(e) 17,000 12,000 ⇥1.7 37.43 52.62 67.35 +3.01 157.4
(f) 17,000 17,000 ⇥2 36.95 52.05 66.95 +2.53 155.95
(g) 17,000 34,000 ⇥3 36.89 51.00 65.64 +1.72 153.53
(h) 17,000 51,000 ⇥4 36.06 50.25 64.78 +0.91 151.09

Max % increase on each dataset +6.03 +1.9 +2.1 +9.87



•ArtVQA (fine art images)

•PathVQA (medical images)

•RSVQA (remote sensing images)

•Note: only in-domain images were used!

Self-Taught Data Augmentation Improves Domain Generalization

Target (0-shot)

Model ArtVQA PathVQA RSVQA

Baseline (BLIP) 31.65 25.09 37.78
BLIP + SelTDA 38.03 26.76 38.99

% gain w.r.t baseline +6.38 +1.67 +1.1



•Finetuning on small tasks really hurts numerical reasoning ability.

•Using self-taught data augmentation helps to retain it.

•Can even induce numerical reasoning ability when original model did not have it.

Mitigation of Catastrophic Forgetting

# Training Pairs Numerical Reasoning

Initialization Real Synth VQAv2 VQA-Rephrasings

BLIPV QAv2 17000 0 13.49 13.06
BLIPV QAv2 17000 2000 38.73 33.74
BLIPV QAv2 17000 4500 40.4 35.91
BLIPV QAv2 17000 8000 42.9 36.5
BLIPV QAv2 17000 12000 43.3 37.77

max % gain w.r.t baseline +29.81 +24.71

BLIP 17000 0 1.42 1.29
BLIP 17000 17000 4.53 11.44
BLIP 17000 34000 5.05 11.77
BLIP 17000 51000 4.26 11.86

max % gain w.r.t baseline +3.63 +10.57



How good are the generated questions?

Question Type Well-Posed Question Answers Correct Answerable % of Total (95% CI)

External Knowledge 73% 62% 70% 29.6% - 50.00%

Visual Identification 94% 88% 94% 11.18% - 27.65 %

Visual Reasoning 83% 70% 80% 32.54% - 53.17%

Overall (95% CI) 71.16% - 87.96% 59.77% - 78.98% 68.83% - 86.22%

•Human evaluation (~100 questions).

•Plenty of noise, but not too far away from annotator agreement (~80%) on real datasets.

•Question quality stratified by type of questions.


•Model has competencies.



How good are the generated questions?

•Generated questions (orange) are diverse, covering:

•real task/domain-specific areas (green)

•generic post-training areas (blue).



Why does it work?
•  Pseudolabels can act as regularization

•  Distillation of dark knowledge from pretraining


•Subtle difference in conditioning

Where do we go from here?
•Language capacity in VLMS has been increasing over time.


•Makes self-improvement more promising. 

•More pre-existing knowledge about the world to draw on.


•Can we start correcting specific errors with self-training?

•Your answer is wrong, think about the problem ‘till you get it right.

P(A | I, Q) P(T | I)vs

model has lot more experience with one

PretrainingVQA


