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Quick Preview of Our Work

Flado: Adaptive Channel Sparsity for Federated Learning under System Heterogeneity

@ FJORD prescrlbes fixed sparsity. (b) Adaptlve sparsity with Flado.

Figure 1. Comparing FjORD and the proposed method Flado.
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Background of Federated Learning

Centralized learning Federated learning
all data are sent to the central server, users train a model and send it to the
which train the centralized datasets. central. Personal data are kept locally.
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Figure 2. European GDPR legislation Figure 3. Comparing centralized and federated learning.

Due to incresingly stringent privacy protection legislations, the traditional centralized data analysis is no
longer applicable for data located on massive edge devices.

image source: https://www mn. uio no/ifi/studier/masteroppgaver/nd/new-aggregation-methods-in-federated-learning.html
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Addressing System Heterogeneity in FL

System Heterogeneity
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Figure 4. Participating clients may have different computing
capabilities.
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Addressing System Heterogeneity in FL

Existing works
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Figure 5. A concept illustration of HeteroFLI["]

HeteroFL.: Slices submodels to adpat to devices with different computing capabilities

[1] Diao, Enmao et al. "HeteroFL: Computation and Communication Efficient Federated Learning for Heterogeneous Clients”, ICLR2021
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Addressing System Heterogeneity in FL

Existing works
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Figure 6. A concept illustration of FjORD!"

FjORD: customizes the maximal model width and applies ordered dropout in each training step.

[1] Horvath et al. "Fjord: Fair and accurate federated learning under heterogeneous targets with ordered dropout.”. NeurlPS2021.
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Addressing System Heterogeneity in FL

Limitations of existing works
System heterogeneity Data heterogeneity
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Figure 7. Existing works focus on system heterogeneity, but ignore the impact of local data distribution.

Limitations:

» Existing works prescribe a coordinate-wise sparsity pattern but ignored different
data distributions among clients, which may cause conflicting gradient updates

> A fixed sparsity scheme could hinder collaborative training among clients, as
some neurons are deactivated permanently.
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Addressing System Heterogeneity in FL

Intuition: neurons may specilize to distinct features

(a) VGG-16 architecture (e) dissection of each convolutional layer  (f) out-of-domain object detection test: conv5_3 unit 150 activation on airplanes
H 3 input image
convi_1 . 55 non-airplane imagenet images, mean=0.8
1o - O object & = imagenet airplane images, mean=88.1
convi_2 | M part g
conv2_1 | [ material
conv2_2 | color
conv3_1 |
convolution convd 2 L <
conv3d_3 g '
. — Inl = - B
pooling conva_1 o e re .
b) unit 10 activation L ] -50 150 200 250
( ) (from layer conv5_3) conv4_2 l-—h—#— unit 150 peak activation per image

conv4_3 |
T ﬂy@ N
convs 2 L L | —

conv5_3 o awrp\ane images
fc6, fc7, fc8

view one unit

fully connected layers < matched visual concepts for all units >

“conference room" «— SCene prediction

(d) conv5_3 summary

13 8 2 %
T
k| 3
g, 1 & H 8
> o~ @
S
!lllllllnlllglll Illlllllllnl-------- e -
> O R @ ry [ « & G
S e S S I e b ‘L&“@‘c"‘ \%@“4@&%’%’ REREER A 5
2

X

o,

& & & deo‘

<

|

o & RFES
& e’

(c) single unlts tested on scenes

unit 150 “airplane” (object)

unit 208 “person top” (part) unit 141 “fur” (material)
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Figure 8. An illustration of single neuron activation on different objects within a VGG-16 scene classifierli?]

[1] Bau David et al. "Understanding the role of individual units in a deep neural network." Proceedings of the National Academy of Sciences, 2020.
[2] Zhou Bolei et al. Interpreting deep visual representations via network dissection. IEEE transactions on pattern analysis and machine intelligence, 2018.
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Addressing System Heterogeneity in FL

Observation: local gradient update is contingent on data distribution
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Figure 9. Similarity matrix of clients’ gradient update direction

Observation: The clients allocated with the same digits shared similar update patterns, while different client pairs
update direction is quite dispersed.
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Addressing System Heterogeneity in FL

Motivation: can we foster collaboration by tailoring sparsity for each client?

Insights: It turns out that clients that shared similar data distributions tend to
have similar updates, and by contrast different data distributions resulted in
disparate updates.

Motivation: Can we concentrate training effort on neurons that specialize to the

data distribution of the client, while paying less attention to neurons that are less
relevant to the client?
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Adaptive Channel Sparsity for Federated Learning

Proposed Method F/ado: Federated Learning with Adaptive Dropout

(a) F_]ORD prescrlbes fixed sparsity. (b) Adaptlve sparsity with Flado.

Figure 10. Comparing FjORD and the proposed method Flado.
How to design the adaptive channel sparsity?

Challenges:

» pruning channel neurons would cause them to make no contribution later.
» prescribing a fixed sparsity scheme to channels can be suboptimal

» data heterogeneity causes clients to specialize to train different neurons

R 9 RN B - DEPARTMENT OF
UNIVERSIDADE DE MACAU COMPUTER AND INFORMATION SCIENCE

UNIVERSITY OF MACAU W l

11



Adaptive Channel Sparsity for Federated Learning

Sparsity-driven Trajectory Alignment

J(z) = PHDz,
fast Johnson-Lindenstrauss transform (FJLT)

maxXp, Kb, ~5(p.)
cossim (J(AH(t)), J(VQ(t)gc (bc o H(t))))y

S.1. ge (Tc, pc) > (). FLOPs budget constraint

FLOPs constraint
gc('rca pc) =Tc — ﬂOpS(fC, pc)/ ﬂOpS(gc, 1)7
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Adaptive Channel Sparsity for Federated Learning

Main Results
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(a) Accuracy vs. FLOPs.

(b) Accuracy vs. Communicated parameters.

(c) Accuracy vs. Communication rounds.

Figure 11. Comparison of convergence curves on CIFAR10.

Flado attains consistently higher converged accuracies.
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Adaptive Channel Sparsity for Federated Learning

Main Results

Table 1. Comparing the sparse FL algorithms on converged accuracies, computation and communication costs.

Method CIFAR-10 | Permitting —5% accuracy budget from Flado | Permitting —10% accuracy budget from Flado
Accuracy A FLOPs A Comm. Params Rounds FLOPs CommParams Rounds FLOPs Comm. Params
HeteroFL  53.83%+1.66 2.13Ps14.67T 18.08 G+124.45M — — — — — —
UniProb 80.91% +o0. 2.90P42.12p 14.01 G418.03G — — — 1329.542.9 6.21 P414.48T 75.59G+176.28M
eFD 81.82%+0.31 113.08 T2a1.82T 34.02G+1.096 —_ - — 1287.545.2 6.01Ps2531T 51.56 G+218.5TM
FjORD 84.38% +0.18% 6.59Pyres2T 47.06 Gees7.26M | 562.545.76 2.63P+1448T 31.98G+176.28M | 314.5+4.6 147Ps22.77T 17.88 G4277.20M
Flado 87.24%+0.17% 7.21P46.18T BT.7T1G475.17T™ | 330.543.45 1.54PisgoT 18.79G+108.03M | 215.5423 1.01PsuiniT 12.25 G+142.62M
Method SVHN | Permitting —2% accuracy budget from Flado Permitting —5% accuracy budget from Flado
Accuracy A FLOPs A Comm. Params Rounds FLOPs Comm. Params Rounds FLOPs Comm. Params
HeteroFL  89.07%+0.23% 390.35 T4 1r.02T 38.63G+103.75M — — - 163.541.7 55.28 T+647.74G 547G46a.1M
UniProb 90.39% +0.07% 299.57 Tasz.02T 22.48G4s.226G — e — 426.5429 139.25T+1012.266  18.07G4131.38M
eFD 91.11% 40.06% 226.29 T240.30T 39.24G45.24G 1540.542.3 502.85 T4+804.65G 51.35Gasz.aim 430.545.2 140.55T41.75T 14.35 G+ 182.26 M
FjORD 92.36% 40.04% 399.73T+1w0.61T 34.31G+1.08G 667.543.5 21786 T41.18T 28.29G+156.45M | 253.541.7 82.75T+625.16G 10.74G1s1.18M
Flado 92.90%40.04% 354.03T+1.46T 15.98 G 104.05M | 442.5:209 144 48Trwi2266  18.75G1s1asM | 1995429 65.14Tri2266 B.45GH131.38M
Method Fashion-MNIST | Permitting —5% accuracy budget from Flado Permitting —10% accuracy budget from Flado
Accuracy A FLOPs A Comm. Params Rounds FLOPs Comm. Params Rounds FLOPs Comm. Params
UniProb 83.00% +0.11% 1.83Ps2s4aT 44.38 G1e9.06M — — — 698.541.7 656.28 T4+1.76T 15.56 Graz67™m
eFD 84.94% +0.00% 1.18P43.66T 33.68 G4ss.saM — e - 410.542.3 386.11 T42.207 6.24 Grasaam
FjORD 85.54% 40.06% 253.80Ta5107T  +7.49G4847.86M — — — 366.541.1 34415 T4 8.16G29.45M
HeteroFL  87.29%+0.17% 35P&3.66T 36.75 G4ss.8aM 498.544.6 491.32T+a60T T66Ge7a.94M 122.545.8 115.10 T45.56T 2.73G+134.95M
Flado 90.58% +0.00% 1.O5P4147.24T 11.56 G42.30G 354.5:40 333.07Tia0sT 790G 195.42M 81.5:17 80.33Ts18a1 1.25G+20.45M

Flado is more efficient than competing methods on computation and communication cost.
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Adaptive Channel Sparsity for Federated Learning

Main Results

Table 2. Comparing the sparse FL algorithms under increasing level of data heterogeneity.

a =00 Accuracy A FLOPs A Comm. Params
HeteroFL  83.20%+0.42% 2.49P+14.67T 21.13G+124.45M
UniProb 85.38%-+0.22% +0.80P+ 2.02p +31.49G+ 17.14G
eFD 85.86%+0.21% —0.87P+98.72T1 —40.32G+ 1.17G
FjORD 87.58%+0.00%  —6.43P+36.67T —44.91 G+313.70M
Flado 89.16%+0.08%  —7.13P+58.68T —86.80G+714.29M
a=25 Accuracy A FLOPs A Comm. Params
HeteroFL  82.51%+0.34% 5.17P+14.67T 43.86 G+124.45M
UniProb 84.82%+0.17% +1.69P+14.67T +39.67G+124.45M
eFD 85.69%+0.25%  —1.75P+14.48T —48.29G+176.28M
FjORD 86.92%+0.17% —5.38 P+14.47T7 —32.17G+123.96 M
Flado 88.85%+0.10%  —6.97P+14.48T —84.81 G+176.28M
a=0.05 Accuracy A FLOPs A Comm. Params
HeteroFL  28.06%+5.04% 2.27P+14.67T 19.29 G+124.45M
UniProb 63.05%+1.14% +0.60P+14.67T7 +15.51 G+124.45M
eFD 62.84%+1.20% —0.34P+13.10T1 —49.88 G+159.45M
FjORD 77.64%+0.91% —10.54P+14.44T1 —82.39G+124.11M
Flado 79.14%+1.12%  —5.92P+14.48T7 —72.07 G+176.28 M

Flado tolerates aggressive data heterogeneity.
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Adaptive Channel Sparsity for Federated Learning

Main Results

Table 3. Comparing the sparse FL algorithms under increasing level of system heterogeneity.

4(0.64,0.64) Accuracy A FLOPs A Comm. Params 4(0.16,0.64) Accuracy A FLOPs A Comm. Params
FjORD 87.01%+0.11%  15.26 P+23.83T 112.89 G+176.28M HeteroFL 57.64%+4.65%  2.52P+16.53T 20.02 G131.00M

HeteroFL 87.43%+0.09%  —4.72P+24.22T —47.32 G£150.50M eFD 83.82%=+0.28% +842.98 T+16.44T  +6.78 Gx131.05M
UniProb 87.44%+013%  —3.11P+23.79T —4.81 G+176.28 M UniProb 83.89%+0.43% —331.42T+16.35T  +25.80 G+176.28M
eFD 88.26%-0.09% —92.18 P+23.82T —99.42 G+149.96 M FjORD 85.84%+0.19% —6.83P+16.35T —73.60 G+176.28M
Flado 88.82%+0.14% —11.88P+23.83T  —25.67 G176.28M Flado 86.91%+0.16%  —5.09P+1634T  —54.90 G176.28M
14(0.32,0.64) Accuracy A FLOPs A Comm. Params 4(0.08,0.64) Accuracy A FLOPs A Comm. Params
HeteroFL 58.91%-14.23% 2.96P+19.11T 21.40 G+138.38 M HeteroFL 57.39%-+4.20% 2.35P+15.36 T 19.39 G+126.96 M

eFD 85.55%+0.15% +227.50 T+18.92T +1.80 G+138.11M eFD 81.45%+0.59%  +999.93 T+15.02T +8.46 G+126.61M
UniProb 86.08%-£0.31% —92.81P+18.84T —1.70 G+176.28 M UniProb 81.70%+0.52% —186.77 T+15.10T  +29.60 G+176.28M
FjORD 86.43%+0.14% —102.70 T+18.84T —960.70 M+176.28M FjORD 84.58%+0.19%  —6.62P+1510T  —77.24 GH176.28M
Flado 87.88%+0.13%  —8.98P+18.84T  +3.04G£176.28M Flado 86.98%z+0.11%  —5.93P+15.087  —69.17G176.28M

Flado is highly elastic under different system heterogeneity levels.
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