Adaptive graph convolutional subspace clustering

自适应图卷积子空间聚类

魏莱 (Wei Lai)

上海海事大学 Shanghai Maritime University weilai@shmtu edu cn

2023年5月29日

- 1 Introduction
- 3 Further Discussions
- 4 Experiments

Conception of subspace clustering

- Subspace clustering is an attractive topic in machine learning and computer vision fields;
- Subspace clustering aims to arrange the high-dimensional data samples into a union of linear subspaces where they are generated from;

Formulation of subspace clustering problem

• Suppose a data matrix $\mathbf{X} = [\mathbf{x}_1; \mathbf{x}_2; \cdots; \mathbf{x}_n] \in \mathcal{R}^{n \times d}$ contains ndata samples drawn from k subspaces, and d is the number of features. The general formulation of a spectral-type subspace clustering algorithm could be expressed as follows:

$$\min_{\mathbf{C}} \quad \Omega(\Phi(\mathbf{X}) - \mathbf{C}\Phi(\mathbf{X})) + \lambda \Psi(\mathbf{C}),
s.t. \quad \Theta(\mathbf{C}) = \mathbf{0} \tag{1}$$

Further Discussions

- $\mathbf{C} \in \mathcal{R}^{n \times n}$ is the reconstruction coefficient matrix and $\Psi(\mathbf{C})$ is usually some kind of constraint;
- ullet $\Phi(\cdot)$ is a function used to find the meaningful latent features for original data samples;
- $\Omega(\cdot)$ is a function to measure the reconstruction residual;
- Θ(C) is some additional constraints.

The existing subspace clustering models

• Classical spectral-type subspace clustering algorithms mainly focus on designing $\Psi(\mathbf{C})$

Table 1: The different functions applied in some representative subspace clustering algorithms.

Algorithms	$\Phi(\cdot)$	$\Omega(\cdot)$	$\Psi(\cdot)$	$\Theta(\cdot)$
SSC	X	$\ \cdot\ _1$	$\ \mathbf{C}\ _1$	$\delta(\mathbf{C}) = 0_n$
LRR	X	$\ \cdot\ _{2,1}$	$\ \mathbf{C}\ _*$	_
LSR	X	$\ \cdot\ _F^2$	$\ \mathbf{C}\ _F^2$	$\delta(\mathbf{C}) = 0_n$
BDR	X	$\ \cdot\ _F^2$	$\ \mathbf{C}\ _{\mathscr{K}}$	$\delta(\mathbf{C}) = 0_n$
				$\mathbf{C} = \mathbf{C}^{\top},$
				$\mathbf{C} \geq 0_{n \times n}$
CASS	X	$\ \cdot\ _F^2$	$\sum_{i=1}^{n} \ \Delta(\mathbf{c}_i)\mathbf{X}\ _*$	_
LS3C	XP	$\ \cdot\ _F^2$	$\ \mathbf{C}\ _1$	$\mathbf{P}^{\top}\mathbf{P}=\mathbf{I}_{n\times n},$
				$\mathbf{X}\mathbf{P}\mathbf{P}^{\top} = \mathbf{X}$
RKLRR	$\phi(\mathbf{X})$	$\ \cdot\ _F^2$	$\ \mathbf{C}\ _*$	_
DSCN	$\mathbb{E}(\mathbf{X})$	$\ \cdot\ _F^2$	$\ \mathbf{C}\ _1$ or $\ \mathbf{C}\ _F^2$	$\mathbb{D}(\mathbb{E}(\mathbf{X})) = \mathbf{X}$

 Usually, deep subspace clustering models achieve the best results.

The weakness of current DSC models

- Deep neural networks can produce highly-expressive mapping functions, the self-expression term in the latent space becomes a regularization function;
- The embedded data geometry is trivial, so the success of deep subspace clustering algorithms may be attributed to an ad-hoc post-processing strategy.

- Introduction
- 2 Our method
- 3 Further Discussions
- 4 Experiments

Idea

- To use GCN technique to design a feature extraction approach and a regularize for reconstruction coefficient matrix simultaneously.
 - The obtained reconstruction coefficient matrix is used to construct a graph convolution operator **S**;
 - The graph convolution operator is used to design 1: a feature extraction method and 2: a constraint of C:
 - S and C affect each other.

Backgrouds: Graph convolutional networks (GCNs)

- Classical GCN:
 - At the *l*-th layer of a GCN model, the features \mathbf{H}^{l-1} ($\mathbf{H}^0 = \mathbf{X}$) of each node are averaged with the feature vectors in its local neighborhood first. Then the aggregated features are transformed linearly.
 - A nonlinear activation (e.g. ReLU()) is applied to output new feature representations H^I.
 - Objection :

$$\mathbf{H}_l \leftarrow \sigma(\mathbf{S}\mathbf{H}_{l-1}\mathbf{W}_{l-1}),\tag{2}$$

where $S = D'^{-\frac{1}{2}}A'D'^{-\frac{1}{2}}$, A' = A + I, D' is the degree matrix of A'.

Backgrouds: Simple graph convolution

SGC:

- It claims that "the nonlinearity between GCN layers is not critical - but that the majority of the benefit arises from the local averaging";
- Objection:

$$\mathbf{H}_l = \mathbf{S}\mathbf{H}_{l-1}\mathbf{W}_{l-1}.\tag{3}$$

By integrating several graph convolutional layers, the final feature representation is

$$\mathbf{F} = \mathbf{S} \cdot \cdot \cdot \mathbf{S} \mathbf{X} \mathbf{W}_1 \cdots \mathbf{W}_M = \mathbf{S}^M \mathbf{X} \mathbf{W}$$
 (4)

where M is the number of graph convolutional layers, the $\mathbf{W} = \mathbf{W}_1 \cdots \mathbf{W}_M$ is also a linear transformation matrix.

Backgrouds: GCN-related subspace clustering algorithms

GCSC (Graph Convolutional Subspace Clustering)[1]:

$$\min_{\mathbf{C}} \|\mathbf{X} - \mathbf{CSX}\|_F^2 + \lambda \|\mathbf{C}\|_F^2,
s.t. \qquad diag(\mathbf{C}) = \mathbf{0}$$
(5)

Graph Filter LSR[2]:

$$\min_{\mathbf{C}} \quad \|\mathbf{F}\mathbf{X} - \mathbf{C}\mathbf{F}\mathbf{X}\|_F^2 + \lambda \|\mathbf{C}\|_F^2, \tag{6}$$

where $\mathbf{F} = (\mathbf{I} - \frac{\mathbf{L}}{2})^k$, $\mathbf{L} = \mathbf{I} - \mathbf{S}$, k is the order of the graph filter, \mathbf{S} is obtained by using \mathbf{C} . FLSR is an iterative method.

[1] Y. Cai, Z. Zhang, Z. Cai, X. Liu, X. Jiang, and Q. Yan, "Graph Convolutional Subspace Clustering: A Robust Subspace Clustering Framework for Hyperspectral Image," IEEE Transactions on Geoscience and Remote Sensing, pp. 1-12, 2020.

[2]Z. Ma, Z. Kang, G. Luo, L. Tian, and W. Chen, "Towards Clustering-friendly Representations: Subspace Clustering via Graph Filtering," in International Conference on Multimedia, Seattle, WA, USA, 2020: ACM, pp. 3081–3089.

The proposed method: AGCSC

- 1. The feature extraction method in AGCSC.
 - Suppose C is obtained, an affinity matrix A could be constructed: $\mathbf{A} = (|\mathbf{C}| + |\mathbf{C}^{\top}|)/2;$
 - With some additional constraints, $\mathbf{C} = \mathbf{C}^{\top}, \mathbf{C} \geqslant \mathbf{0}, \mathbf{C}\mathbf{1} = \mathbf{1}$ and $diag(\mathbf{C}) = \mathbf{0}$, we could obtain $\mathbf{A} = \mathbf{C}$, $\mathbf{S} = \mathbf{D}'^{-\frac{1}{2}}\mathbf{A}'\mathbf{D}'^{-\frac{1}{2}} = (\mathbf{C} + \mathbf{I})/2$;
 - Aggregated feature matrix: F = SX = (C + I)/2.
- 2. The regularizer of the coefficient matrix in AGCSC.
 - The new representation of C: $SC = \frac{1}{2}(C+I)C = \frac{1}{2}(C^2+C)$
 - C and SC should have a similar characteristic, then $\Psi(\mathbf{C}) = \|\mathbf{C} \mathbf{S}\mathbf{C}\|_F^2 = \|\mathbf{C} \frac{1}{2}(\mathbf{C}^2 + \mathbf{C})\|_F^2 = \|\frac{1}{2}\mathbf{C} \frac{1}{2}\mathbf{C}^2\|_F^2 = \frac{1}{4}\|\mathbf{C} \mathbf{C}^2\|_F^2.$

The objective function of AGCSC

By combing the two terms, we have:

Our method 00000000

$$\begin{aligned} \min_{\mathbf{F},\mathbf{C}} & & \|2\mathbf{F} - (\mathbf{C} + \mathbf{I})\mathbf{X}\|_F^2 + \alpha \|\mathbf{X} - \mathbf{C}\mathbf{F}\|_F^2 + \beta \|\mathbf{C} - \mathbf{C}^2\|_F^2, \\ s.t. & & \mathbf{C} = \mathbf{C}^\top, \mathbf{C}\mathbf{1} = \mathbf{1}, \mathbf{C} \geqslant \mathbf{0}, diag(\mathbf{C}) = \mathbf{0}, \end{aligned}$$
(7)

 The above problem could be solved by using ADMM (alternating direction method of multipliers method)

$$\begin{cases}
\mathbf{C}_{t+1} &= \left(2\mathbf{X}\mathbf{X}^{\top} + 2\alpha\mathbf{F}_{t}\mathbf{X}^{\top} + 2\beta(\mathbf{I} - \mathbf{Z}_{t})(\mathbf{I} - \mathbf{Z}_{t})^{\top} + \mu_{t}(\mathbf{I} + \mathbf{1}\mathbf{1}^{\top})\right)\left(4\mathbf{F}_{t}\mathbf{X}^{\top} - 2\mathbf{X}\mathbf{X}^{\top} + 2\alpha\mathbf{X}\mathbf{F}_{t}^{\top} + \mu_{t}(\mathbf{Z}_{t} + \mathbf{1}\mathbf{1}^{\top}) - \mathbf{M}_{t} - \mathbf{N}_{t}\mathbf{1}^{\top}\right)^{-1}, \\
\mathbf{F}_{t+1} &= \left(\alpha\mathbf{C}_{t+1}^{\top}\mathbf{C}_{t+1} + 2\mathbf{I}\right)^{-1}\left((\mathbf{C}_{t+1} + \mathbf{I} + \alpha\mathbf{C}_{t+1}^{\top})\mathbf{X}\right), \\
\mathbf{Z}_{t+1} &= \left(2\beta\mathbf{C}_{t+1}^{\top}\mathbf{C}_{t+1} + \mu_{t}\mathbf{I}\right)^{-1}\left(2\beta\mathbf{C}_{t+1}^{\top}\mathbf{C}_{t+1} + \mu_{t}\mathbf{I} + \mu_{t}\mathbf{C}_{t+1}\right), \\
\mathbf{M}_{t+1} &= \mathbf{M}_{t} + \mu_{t}(\mathbf{C}_{t+1} - \mathbf{Z}_{t+1}), \\
\mathbf{N}_{t+1} &= \mathbf{N}_{t} + \mu_{t}(\mathbf{C}_{t+1} - \mathbf{I}), \\
\mu_{t+1} &= \min(\mu_{max}, \rho \mu_{t}),
\end{cases} \tag{8}$$

Further Discussions 0000000

- Introduction
- Our method
- 3 Further Discussions
 - A. Block diagonal property
- 4 Experiments

Further Discussions 000000

- Introduction
- Our method
- 3 Further Discussions
 - A. Block diagonal property
- 4 Experiments

Block diagonal property

 Problem (8) could be regarded as a relaxed problem of the following problem:

$$\min_{\mathbf{C}} \quad \|\mathbf{C} - \mathbf{C}^2\|_F^2
s.t. \quad \mathbf{X} = \mathbf{C}\mathbf{X},
\mathbf{C} = \mathbf{C}^\top, \mathbf{C}\mathbf{1} = \mathbf{1}, \mathbf{C} \geqslant \mathbf{0}, diag(\mathbf{C}) = \mathbf{0}.$$
(9)

• The solution to Problem (9) will be block diagonal.

Further Discussions 0000000

- Introduction
- Our method
- 3 Further Discussions
 - A. Block diagonal property
 - B. Doubly stochastic property
- 4 Experiments

Doubly stochastic property

• For the *i*-th block of \mathbb{C} , $|[\mathbb{C}_i]_{p,q} - [\mathbb{C}_i]_{s,t}| \leq 1$, where $[\mathbb{C}_i]_{p,q}$ and $[\mathbf{C}_i]_{s,t}$ are the (p,q)-th and (s,t)-th elements in \mathbf{C}_i and $p, q, s, t \in \{1, 2, \dots, n_i\}$

Further Discussions

 The differences in coefficients located in the same diagonal block will be small.

Further Discussions 0000000

- Introduction
- Our method
- 3 Further Discussions
 - A. Block diagonal property

 - C. Post-processing strategy
- 4 Experiments

- The frequently used post-processing strategy is to keep the *m*-largest values for each coefficient vector and discard the relatively small ones.
- AGCSC with thresholding post-processing skill is called TAGCSC.

- Introduction
- 3 Further Discussions
- 4 Experiments

Clustering results: Compared with shallow models

Dataset Metric	Method											
	SSC	LRR	LRSC	LSR	BDR	TRR	FLSR	FTRR	GCSC	AGCSC	TAGCSC	
ORL ACC NMI	72.50	72.75	77.00	75.50	78.25	85.75	73.50	79.75	73.75	80.50	86.25	
	84.52	83.26	85.02	84.97	88.46	91.49	83.84	87.60	83.98	88.51	92.84	
YALEB ACC NMI	55.15	73.48	75.64	74.05	76.56	91.65	72.94	91.90	62.50	84.79	92.31	
	55.71	77.11	78.32	78.13	80.34	93.03	76.57	93.18	68.04	87.37	94.04	
Umist ACC NMI	52.92	64.79	63.33	64.17	64.92	74.38	60.62	69.37	79.58	81.04	90.83	
	75.38	73.41	72.02	73.17	75.13	80.63	70.72	78.49	86.44	87.46	94.99	
COIL20 ACC NMI	ACC	68.61	70.14	71.81	69.17	71.71	85.97	69.93	86.53	79.79	88.75	98.96
	NMI	66.85	76.43	77.27	74.17	80.51	90.23	77.19	91.17	85.67	93.38	99.11
COIL40 ACC NMI	ACC	63.13	60.42	58.23	56.88	57.25	65.00	62.88	71.39	73.72	78.12	92.60
	NMI	82.28	76.29	74.48	75.87	76.73	79.83	76.26	82.46	84.32	89.21	97.32
	ACC	63.70	64.60	64.30	62.80	61.30	67.70	65.10	66.40	67.70	71.40	72.80
	NMI	59.75	60.67	58.91	57.18	54.76	64.43	61.10	63.21	61.99	65.84	67.54

Figure 1: Clustering results (in %) of various methods on the used benchmark data sets. The best results are emphasized in bold and the second best results are denoted in bold and italic.

Clustering results: Compared with deep models

Dataset M	Metric	Method								
	Metric	AE+SSC	DSC-L1	DSC-L2	DEC	DKM	DCCM	AGCSC	TAGCSC	
OBL	ACC	75.63	85.50	86.00	51.75	46.82	62.50	80.50	86.25	
	NMI	85.55	90.23	90.34	74.49	73.32	79.06	88.51	92.84	
VALER	ACC	74.80	96.80	97.33	86.84	-	-	84.79	92.32	
	NMI	78.33	96.87	97.03	92.40	-	-	87.34	94.04	
Umist	ACC	70.42	72.42	73.12	55.21	51.06	54.48	81.04	90.83	
	NMI	75.15	75.56	76.62	71.25	72.49	74.40	87.49	94.99	
COIL20	ACC	87.11	93.14	93.68	72.15	66.51	80.21	88.75	98.96	
	NMI	89.90	93.53	94.08	80.07	79.71	86.39	93.38	99.11	
COIL40	ACC	73.91	80.03	80.75	48.72	58.12	76.91	78.12	92.60	
	NMI	83.18	88.52	89.41	74.17	78.40	88.90	89.21	97.23	
MNIST	ACC	48.40	72.80	75.00	61.20	53.32	40.20	71.40	72.80	
	NMI	53.37	72.17	73.19	57.43	50.02	34.68	65.84	67.54	

Figure 2: Clustering results (in %) of AGCSC and TAGCSC compared with several deep clustering methods. The best results are emphasized in bold. Some results are ignored because the results are not found in corresponding literatures.

Experiments: Feature aggregation

Figure 3: The visualisation of aggregated feature representations obtained by (a) AGCSC, (b) GCSC, (c) FLSR and (d) FTRR on Umist data set.

Experiments: Block diagonal property of coefficient matrices 1

Figure 4: The obtained coefficient matrices obtained by (a) TRR, (b) FTRR, (c) AGCSC and (d) TAGCSC

Experiments: Block diagonal property of coefficient matrices 2

Figure 5: The partial coefficient matrices of (a) AGCSC and (b) TAGCSC corresponding to the samples from the first 10 classes.

Experiments: Parameter analyses (α and β)

Figure 6: The influence of parameters α and β on clustering accuracy of AGCSC.

Experiments: Parameter analyses (m)

Figure 7: The influence of thresholding value m on the clustering performance of TAGCSC.

Experiments: Convergence analyses

Figure 8: The residuals of variables F, C, Z versus the iterations on ORL database.

Experiments: Computation burden analyses

Figure 9: Computation time (seconds) for different algorithms to run on different datasets. The y-axis coordinates are in seconds.

Thanks!