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Conception of subspace clustering

® Subspace clustering is an attractive topic in machine learning
and computer vision fields;

® Subspace clustering aims to arrange the high-dimensional data
samples into a union of linear subspaces where they are
generated from;
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Formulation of subspace clustering problem

® Suppose a data matrix X = [X;Xp;- - ;X,,] € Z"¢ contains n
data samples drawn from k subspaces, and d is the number of
features. The general formulation of a spectral-type subspace
clustering algorithm could be expressed as follows:

minc  Q(P(X) — CP(X)) +A1¥(C), 1)
s.t. 0(C)=0

e Cc#™" is the reconstruction coefficient matrix and ¥(C) is
usually some kind of constraint;

® ®(.) is a function used to find the meaningful latent features
for original data samples;

® Q(-) is a function to measure the reconstruction residual;

e O(C) is some additional constraints.
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The existing subspace clustering models

e (lassical spectral-type subspace clustering algorithms mainly
focus on designing ¥(C)

Table 1: The different functions applied in some representative
subspace clustering algorithms.

Algorithms | ®(-) | Q(-) w() o(-)

SsC X - | lIChh 5(C) =0,

LRR X [-ll21 | €Il -

LSR X H”Izv“ HCHIZT 6(C)=0,

BDR X -1 | IClx 8(C)=0,
c=cCT,
C2>0,xn

CASS X I-F | Ty lae)X]. | —

LS3C XP | -3 | lch PP =1,
XPP' =X

RKLRR oX) | II-llF | lCl -

DSCN EX) | [IIE [ I€lor|IClE | DEX)) =X

® Usually, deep subspace clustering models achieve the best

results.

Wei Lai (Shanghai Maritime University) 2023 5 A 29 8 5 /32



Introduction
0000e

The weakness of current DSC models

® Deep neural networks can produce highly-expressive mapping
functions, the self-expression term in the latent space becomes
a regularization function;

® The embedded data geometry is trivial, so the success of deep
subspace clustering algorithms may be attributed to an ad-hoc
post-processing strategy.

2023 5 A 29 B

6 /32

Wei Lai (Shanghai Maritime University)



Our method
00000000

@® Our method

ai Maritim



Our method
[e] lelelelee]e)

® To use GCN technique to design a feature extraction approach
and a regularize for reconstruction coefficient matrix
simultaneously.
® The obtained reconstruction coefficient matrix is used to
construct a graph convolution operator S;
® The graph convolution operator is used to design 1: a feature
extraction method and 2: a constraint of C;
® S and C affect each other.

Aggregated features
gg.g mm -
H u
| |
L] ||
X || W | S
HE B
HE
||
| | |
||
Original data Coefficient matrix Graph convolution operator

Coefficient aggregation

Feature aggregation
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Backgrouds: Graph convolutional networks (GCNs)

® (Classical GCN:

® At the I-th layer of a GCN model, the features H~! (H? = X)
of each node are averaged with the feature vectors in its local
neighborhood first. Then the aggregated features are
transformed linearly.

® A nonlinear activation (e.g. ReLU()) is applied to output new
feature representations H'.

® Objection :

H;, + G(SH1,1W1,1), (2)

where S = D’_%A’D’_%, A’ =A+1, D is the degree matrix of
A
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Backgrouds: Simple graph convolution

° SGC:
® |t claims that “the nonlinearity between GCN layers is not
critical - but that the majority of the benefit arises from the
local averaging";
® Objection:
H,=SH, W, ;. (3)

By integrating several graph convolutional layers, the final
feature representation is

M

M
F=S...SXW,---W,, = SYXW (4)

where M is the number of graph convolutional layers, the
W =W, ..-Wy, is also a linear transformation matrix.
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Backgrouds: GCN-related subspace clustering algorithms

e GCSC (Graph Convolutional Subspace Clustering)[1]:

minc X —CSX||z+A[|C|Z, (5)
s.t. diag(C) =0

® Graph Filter LSR[2]:
minc  [FX — CFX||7+ 2| C|, (6)

where F = (I— %)%, L=1-S8, k is the order of the graph

filter, S is obtained by using C. FLSR is an iterative method.

[1] Y. Cai, Z. Zhang, Z. Cai, X. Liu, X. Jiang, and Q. Yan, "Graph Convolutional Subspace Clustering: A Robust
Subspace Clustering Framework for Hyperspectral Image," IEEE Transactions on Geoscience and Remote Sensing,
pp. 1-12, 2020.

[2]Z. Ma, Z. Kang, G. Luo, L. Tian, and W. Chen, "Towards Clustering-friendly Representations: Subspace
Clustering via Graph Filtering," in International Conference on Multimedia, Seattle, WA, USA, 2020: ACM, pp.

3081-3089.
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The proposed method: AGCSC

® 1. The feature extraction method in AGCSC.
® Suppose C is obtained, an affinity matrix A could be
constructed: A = (|C|+|CT|)/2;
® With some additional constraints, C = CT,C >0Cl1=1 and
diag(C) =0, we could obtain A =C,
S=D PAD I =(C+D)/2;
® Aggregated feature matrix: F=SX = (C+1)/2.
® 2. The regularizer of the coefficient matrix in AGCSC.
® The new representation of C: SC = 3(C+I)C = 3(C>+C)
® C and SC should have a similar characteristic, then
¥(C) = [|IC—-SC| = [C-3(C*+O)|F = [13C - 3C*[F =
e — 2112
iIC—C7E.
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The objective function of AGCSC

® By combing the two terms, we have:

mingc  [|2F — (C+ DX + o X - CF||7 + B[ C - C|7,
s.t. C=C",C1=1,C > 0,diag(C) =0,
(7)
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The optimization of AGCSC

® The above problem could be solved by using ADMM
(alternating direction method of multipliers method)

(2XX" +20F X" +2B(1-Z)(1-Z,)"
+p(I+117)) (4F X" —2XX " +20XF,
u(Z+11T) =M, —N1T)

(6C 1 Cp +21) 7 (it +1

+aC/,,)X), (8)
(zﬁcm-l Ct+1 + .utI) (ZBCH-I Ct+1

+M; J’_NICH-I)a

M, + u(Crp1 — Zi1a),

N+ (Crp11-1),

min(ynax, PU;),
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© Further Discussions
A. Block diagonal property
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® Problem (8) could be regarded as a relaxed problem of the
following problem:

ming HC—CZH%
sit. X=CX, 9)
C=CT,C1=1,C > 0,diag(C) = 0.

® The solution to Problem (9) will be block diagonal.
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© Further Discussions

B. Doubly stochastic property
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Doubly stochastic property

® For the i-th block of C, |[Ci], 4 — [Cils:| <1, where [Ci], 4, and
[Cils, are the (p,q)-th and (s,7)—th elements in C; and
D,q,8,t € 172a"' o

® The differences in coefficients located in the same diagonal
block will be small.
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© Further Discussions

C. Post-processing strategy
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Post-processing strategy

® The frequently used post-processing strategy is to keep the
m-largest values for each coefficient vector and discard the
relatively small ones.

e AGCSC with thresholding post-processing skill is called
TAGCSC.
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Clustering results: Compared with shallow models

. Method
Dataset  Melric \—gg=—Tpr—[RSC TSR BDR _TRR _FLSR TTRR GCSC  AGCSC  TAGCSC
p— ACC | 7250 7275 7700 7550 7825 8575 1350 1975 1375 80.50 86.25
NMI | 8452 8326 8502 8497 8846 9149 8384 8760 8398 88.51 92.84
VALER ACC [ 5505 7348 7564 7405 76356 9165 1294 9190 6250 8479 9231
NMI | 5571  77.11 7832 78.13 8034 9303 7657 9318 6804 8737 94.04
Umi ACC [ 5292 6479 6333 6417 6492 7438 60.62 6937 7958  8L04 90.83
NMI | 7538 7341 7202 7317 7513 8063 7072 7849 8644  87.46 94.99
colao  ACC [ 6861 704 7I8I 6907 7L71 8597 6993 8653 799 8875 98.96
NMI | 6685 7643 7727 7417 8051 9023 7719 9117 8567  93.38 99.11
colao ACC [ 6313 6042 3823 5688 5725 6500 6288 7139 7372 7802 92.60
NMI | 8228 7629 7448 7587 7673 7983 7626 8246 8432  89.21 97.32
MNIST | ACC | 6370 6460 6430 6280 6130 6770 6510 6640 6770 7040 72.80
NMI | 5975 6067 5891 S57.18 5476 6443 6110 6321 6199 6584 67.54

Figure 1: Clustering results (in %) of various methods on the used
benchmark data sets. The best results are emphasized in bold and the
second best results are denoted in bold and italic.
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Clustering results: Compared with deep models

Dataset Metric e Methd
AE+SSC DSC-L1 DSC-L2 DEC DKM DCCM AGCSC  TAGCSC

ORL ACC 75.63 85.50 86.00 51575 46.82 62.50 80.50 86.25
NMI 85.55 90.23 90.34 74.49 73:32 79.06 88.51 92.84
YALEB ACC 74.80 96.80 97.33 86.84 - - 84.79 92.32
NMI 78.33 96.87 97.03 92.40 - - 87.34 94.04
Umist ACC 70.42 72.42 73.12 5521 51.06 54.48 81.04 90.83
NMI 75:15 75.56 76.62 7125 72.49 74.40 87.49 94.99
COIL20 ACC 87.11 93.14 93.68 215 66.51 80.21 88.75 98.96
NMI 89.90 93.53 94.08 80.07 79.71 86.39 93.38 99.11
COTLA0 ACC 73.91 80.03 80.75 48.72  58.12 76.91 78.12 92.60
NMI 83.18 88.52 89.41 74.17 78.40 88.90 89.21 97.23
MNIST ACC 48.40 72.80 75.00 61.20 53.32 40.20 71.40 72.80
NMI 53.37 72.17 73.19 5743 50.02 34.68 65.84 67.54

Figure 2: Clustering results (in %) of AGCSC and TAGCSC compared
with several deep clustering methods. The best results are emphasized in
bold. Some results are ignored because the results are not found in
corresponding literatures.
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Experiments: Feature aggregation

(a) AGCSC (b) GCSC
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Figure 3: The visualisationa of aggregated feature representations
obtained by (a) AGCSC, (b) GCSC, (c) FLSR and (d) FTRR on Umist

data set.
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Experiments: Block diagonal property of coefficient matrices 1

a) TRR

(b) FTRR

(c) AGCSC d| TAGCSC

0 01 02 03 04 05 06 07 08 09 1

Figure 4: The obtained coefficient matrices obtained by (a) TRR, (b)
FTRR, (c) AGCSC and (d) TAGCSC
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Experiments: Block diagonal property of coefficient matrices 2

I

50 100 50 100

Figure 5: The partial coefficient matrices of (a) AGCSC and (b) TAGCSC
corresponding to the samples from the first 10 classes.
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Experiments: Parameter analyses (& and f3)

(a) ORL (b) YALEB (c) COIL20
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Figure 6: The influence of parameters @ and 3 on clustering accuracy of
AGCSC.
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Experiments: Parameter analyses (m)
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Figure 7: The influence of thresholding value m on the clustering
performance of TAGCSC.
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Experiments: Convergence analyses

1.2 T
residual of C
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Figure 8: The residuals of variables F,C,Z versus the iterations on ORL
database.
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Experiments: Computation burden analyses
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Figure 9: Computation time (seconds) for different algorithms to run on
different datasets. The y-axis coordinates are in seconds.
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Thanks!
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