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ObjectStitch Overview

e ObjectStitch simultaneously handles multiple aspects of 2D object compositing
e ObjectStitch is a self-supervised model that does not require task-specific annotation
e \We use a content adaptor to maintain categorical semantics and object appearance
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2D Object Compositing

Task definition:
e A common scenario in image editing: + background image B = ?
e Given the location and scale in the target image, how to generate a realistic composite image that
preserves the identity of the source object?

Is: source image ls®ms: object of interest

lc: composited image




Related Works - Image Compositing

e ST-GANM: geometric correction
e SSH: harmonization
e SSNE: shadow synthesis

Each of them focuses on a single sub-task
They cannot generate novel view
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Related Works - Object Personalization with Diffusion Models

e DreamBooth*, Imagic®!
e Limitation: the model needs to be fine-tuned for each subject on paired images
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Data Preparation and Self-Supervision

Task-specific training data is expensive to obtain

Source: Pixabay

Augmentations: warping — rotation — color shifting — crop
Training pairs: (augmented) + original image
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ObjectStitch: Architecture

e Consist of: a generator (pretrained T2I DM) + a content adaptor
e The content adaptor generates adaptive embedding that preserves details
e The mask is applied on the generated image at each iteration
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Content Adaptor

e Motivation:

o Bridge the domain gap between text embedding and image embedding
o Resolve the mismatch in their dimensions

o Trained on LAION image-caption pairs
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where T is the content adaptor,
E is the target text embedding



Training

e Content adaptor pretraining
Laist = |T(E) — E|; where Tis the content adaptor

e Content adaptor fine-tuning

Ladapt = Er eon(0,1)]|€ — €0(I 0 M, t, TEN|3] where 1 is a noisy version of / at step ¢
e Generator fine-tuning

Lgen = EE,ENN(O,I)[||€ —eg(lr 0 M, ¢, E)Hg]



User Studies

Collect a real test dataset of 503 object-background pairs
A side-by-side comparison of the results

Diffusion model-based baselines: BLIP®! and SDEditl"]
Image blending-based baselines + shadow synthesis

Pick from image A and image B the one that you think
looks more realistic.

Ours 55.62% 44.38% BLIP
Ours 85.14% LX) Copy-paste

Which generated object do you think is most likely to Method | DIB+SGRNet GPGAN+SGRNet PB+SGRNet
be the same one from the guidance?

. Ours | 82.93% 84.74% 76.91%
Ours 59.04% 40.96% BLIP+SDEdit
A ~ BLIP: Li et al. 2022; SDEdit: Meng et al. 2021; DIB: Zhang et al. 2020;
Ours 71.35% 28.65% BLIP GPGAN: Wu ef al. 2019; PB: Pérez et al. 2003; SGRNet: Hong et al. 2022
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[6] Li, Junnan, et al. "Blip: Bootstrapping language-image pre-training for unified vision-language understanding and generation." International Conference on Machine Learning. PMLR, 2022.
[7] Meng, Chenlin, et al. "Sdedit: Image synthesis and editing with stochastic differential equations." arXiv preprint arXiv:2108.01073 (2021).



Quantitative Results

e Metrics: FID®! LPIPSP! modified CLIPI' scores
o CLIP text score and CLIP image score

Cizt = E[s- f(Ipred) - g (B(I4))] where Bis pretrained BLIP
Cimg = E[s - f(Ipred) - f(Igt)]

Method Crop FID| LPIPS | CLIP textscore ¥ CLIP image score 1

BLIP X 18.3673  0.0923 29.6719 95.5625
SDEdit X 17.4963 0.0870 29.6563 96.1250
Ours X 15.8191  0.0835 29.8594 97.0000
BLIP v 28.0690 0.2463 29.0313 91.1250
SDEdit 27.0630 0.2312 29.0625 91.8750
Ours v 244719 0.2223 29.4844 93.7500

[8] Heusel, Martin, et al. "Gans trained by a two time-scale update rule converge to a local nash equilibrium." Advances in neural information processing systems 30 (2017).
[9] Zhang, Richard, et al. "The unreasonable effectiveness of deep features as a perceptual metric." Proceedings of the IEEE conference on computer vision and pattern recognition. 2018.
[10] Hessel, Jack, et al. "Clipscore: A reference-free evaluation metric for image captioning." arXiv preprint arXiv:2104.08718 (2021).



Qualitative Results
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Conclusions

We propose the first diffusion-based method to tackle object compositing
We introduce a novel content adaptor module

We present a fully self-supervised framework with data augmentation
Our model outperforms the baselines on real-world examples



