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(c) Performance

difference remains constant. This is superior for the network to detect objects in roadside view.

robust roadside 3D object detection.

Background: Most AD systems neglect leveraging roadside cameras to enhance perception beyond visual range.

Motivation: The depth difference between the car and the ground decreases as distance increases, while the height

Method: We propose BEVHeight, by regressing ground height instead of pixel-wise depth, achieving accurate and

Experiments: Our method outperforms the best approach by 4.85% on clean settings and 26.88% on noisy settings.



Background

e Autonomous driving faces great safety challenges due to the inevitably physical occlusion and limited receptive field.

* Roadside perception has a longer perceptual range and greater robustness to occlusion.

* Roadside perception facilitate a safer autonomous driving.

vehicle-side roadside
perception perception
/
redundancy for compensation
vehicle-side for vehicle-side
perception corner cases

Fig. 1: The inevitably physical occlusion Fig. 2: The comparison of (a) vehicle  Fig. 3: the redundancy complementarity
in vehicle-side perception view and (b) roadside camera view in vehicle and roadside platforms.
with a pitch angle.



Background

Vision-based roadside 3D object detection have two challenges:
e Various camera’s specifications, such as roll, pitch and mounting height.

* Anincrease in obstacle density.
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Fig. 4. The images from different roadside cameras. Fig. 5. The diversity of roadside camera’s
specifications in Rope3D dataset.



Motivation

Principle from 2D to 3D

;N = 5 — '
L Q o Near — Far O S Near — Far
d—d —0 ? h—h'=c
A d
A ST Depth
T Far
Height

/) near car A D

A

A

Road-side Image (a) Depth-based Detector (b) Height-based Detector
a) The depth differences between points on the car roof and surrounding ground quickly shrink when the car moves

away from the camera, making it sub-optimal to optimize especially for far objects.

b) The height difference between the same points remains agnostic regardless of the distance, and visually is superior
for the network to detect objects.



Motivation

Comparing the depth and height

Distribution:

The range of depth is over 200 meters while the
height is within 5 meters, which makes height
much easier to learn.

Analysis when extrinsic parameters change:

Compared with depth, the noisy setting of height
has larger overlap with its original distribution,
which demonstrates height estimation is more
robust.
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Fig. 7. The comparison of predicting height and depth.
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Proposed Method
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Fig. 9. The overall framework of BEVHeight

Image-view extracts the 2D high-dimensional image features from a RGB image.
Encoder
Voxel : : o
Pooling transforms the 3D volume features into the BEV features along the height direction.
Detection

Head predicts the 3D bounding box consisting of location, dimension, and orientation.



Proposed Method
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Fig. 10. Height Discretization Methods.
HeightNet generate bins-like height distribution and context features.

* Context branch consists of a squeeze-and-excitation(SE) layer. «| h—h,m,
* Height branch contains three residual blocks and a DCN layer. : Riax — Rmin

« A dynamic-increasing discretization strategy (DID) with adjustable size.



Proposed Method

Algorithm 1 Height-based 2D to 3D projector
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Experiments

Comparisons with state-of-the-arts

Tab. 1: Comparisons with SOTA methods on the DAIR-V2X-I val set.

Vehicle(ro—0.5 Pedestrian jor/—0.25 Cyclist ;or7—0.25 .
Method Modality L) | (o0 | (ol=02%) DAIR-V2X-I:
| | Easy  Moderate  Hard | Easy  Moderate  Hard | Easy  Moderate  Hard . L
PointPillars [ 1] L 63.07 54.00 5401 | 3853 37.20 3728 | 38.46 22.60 22.49 Our method Slgmﬂca ntly outperforms
SECOND [6] L 71.47 53.99 5400 | 55.16 52.49 5252 | 54.68 31.05 31.19 .
MVXNet [5] LC 71.04 5371 5376 | 55.83 54.45 5440 | 54.05 30.79 31.06 the SOTA by d Iarge margin;
ImvoxelNet [4] c 4478 37.58 3755 | 68l 6.746 673 | 21.06 13.57 13.17 Vehicle +2.19% Pedestrian +5.87%
BEVFormer [ 3] C 61.37 50.73 5073 | 16.89 15.82 1595 | 22.16 22.13 22.06 .
BEVDepth [2] C 75.50 63.58 63.67 | 34.95 33.42 3327 | 55.67 55.47 55.34 CyC|ISt +4.61%
BEVHeight | 77.78 65.77 65.85 | 41.22 39.29 39.46 | 60.23 60.08 60.54

L. C denotes LiDAR, camera respectively.

Tab. 2: Comparisons with SOTA methods on the Rope3D val set.

| IoU=0.5 IoU = 0.7

e | e Rope3D:

Method | Car | Big Vehicle | Car | Big Vehicle h . | b h h

| AP Rope | AP Rope | AP Rope | AP Rope Ours method is also better than the
M3D-RPN [1] 5419 6265 | 3305 4494 | 1675 3290 | 686  24.19 SOTA under large-scale dataset.
Kinematic3D [2] | 50.57 5886 | 37.60 48.08 | 17.74 329 6.10  22.88 0
MonoDLE [6] 5170 6036 | 4034 50.07 | 13.58 2946 | 9.63  25.80 Car +4.97%
MonoFlex [ 1] 6033 66.86 | 37.33  47.96 | 33.78  46.12 | 10.08  26.16 Big Vehicle +3.91%
BEVFormer [5] 50.62 5878 | 3458 4516 | 24.64 3871 | 10.05 2556
BEVDepth [4] 69.63 7470 | 4502 5464 | 4256  53.05 | 2147 3582
BEVHeight | 7460 78.72 | 4893  57.70 | 4573  55.62 | 23.07 37.04

AP and Rope denote AP3ppyq and Ropescore respectively.



Experiments

Comparisons on robustness settings
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Tab. 3: Comparisons on robustness settings.

’Disturbed‘ Vehicle ;o17=0.5) | Pedestrian ,1/—0.25) | CyclistUoU:O.%)
Model |roll pitch | Easy Moderate Hard | Easy Moderate Hard | Easy Moderate Hard
61.37 50.73 50.73[16.89 15.82 1595(22.16 22.13 22.0
BEVFormer [ 1] v 50.65 4290 4295|10.16 941 947 113.62 13.71 13.08
‘ v 4640 38.26 38.37|9.12 8.44 8.55 | 8.99 8.43 8.42
v v 119.24 16.35 16.47] 3.93 3.43 3.52 1493 4.98 4.98
71.56  60.75 60.85|21.55 20.51 20.75{40.83 40.66 40.26
v 34.82  28.32 28.35|4.49 4.36 439 11048 9.51 9.73

R

BEVDepth [] v o[1404 1141 1149[301 267 275|643 623 683
v v |11.84 948 954 | 2.16 1.84 1.89 | 4.31 4.14 4.26
75.58 63.49 63.59|2693 2547 25.78(47.97 4745 48.12
BEVHeicht v 66.06 5499 55.14|18.66 17.63 17.78(34.45 2693 27.68
& v |6849 5698 57.11|17.94 16.87 17.09|34.48 27.82 28.67
v v 162.64 51.77 519 |14.38 14.01 14.09|31.28 25.24 26.02
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Experiments

Ablation Studies

Dynamic Discretization strategy (DID):

Our dynamic discretization is effective.

The hype-parameter a is necessary to achieve the most
appropriate discretization.

Latency:

The BEVHeight is more efficient because of much less height
bins in the smaller height range.

Tab. 4: Ablation on dynamic discretization.

Spacing | VEh-(IoU=O.5) ‘ Ped.(IoU=O,25) ‘ Cyc‘(IoUZO.ZS)

DID (o) UD | Easy Mid Hard | Easy Mid Hard | Easy Mid Hard

v | 75.63 63.75 63.85|25.82 2547 2535|47.52 4747 47.19
v (1.5) 76.24 64.54 64.13 | 26.47 25.79 25.72 | 48.55 48.21 47.96
v (2.0) 76.61 64.71 64.76 | 27.34 26.09 25.33 | 49.68 48.84 48.58

Tab. 5: Latency of BEVHeight and BEVDepth.

Methods | Backbone | Range | Number of bins | Latency (ms) | FPS
BEVDepth [16] R50 1-104m 206 82 12.2
BEVHeight R50 -1-1m 90 77 13.0
BEVDepth [16] R101 1-104m 206 68 14.7
BEVHeight R101 -1-1m 90 62 16.1

Measured on a V100 GPU. Image shape 864x1536.
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Experiments

Ablation Studies
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compared to depth estimation in roadside scenarios,

(a) BEVDepth Distance Correlation (b) BEVHeight Distance Correlation

minimizing errors. Fig. 11. Empirical analysis of the distance correlation

] ] Tab. 6: Ablation studies on different depth-based methods.
Effectiveness on multi depth-based Detectors:

Replacing the depth-based projection in BEVDepth, our method Meod  vri—tiou=0-9) | Pedtrov=029) | SYeuou—o.29

| | Easy Mod. Hard | Easy Mod. Hard | Easy Mod. Hard
75.50 63.58 63.67‘34.95 33.42 33.27’55.67 55.47 55.34

achieves a performance increase of 2.19%, 5.87%, 4.61% on
77.78 65.77 65.85| 41.22 39.29 39.46| 60.23 60.08 60.54

D [59.59 51.92 51.81|12.61 12.43 12.37|34.91 34.32 34.21
H|69.42 60.48 59.68| 18.11 17.81 17.74| 44.69 42.92 4234

VT denotes view transformation, D,H represents depth-based and height-based ones.

BEVDemh[uqy%‘

vehicle, pedestrian and cyclist. Similarly, our approach
surpasses BEVDet by 8.56%, 5.35%, 8.60% respectively.

BEVDet [10] ’
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Experiments

Qualitative results
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black - ground truth
red - false positive
green - truth positive

On the clean setting, our BEVHeight fit more closely to the ground truth than that of BEVDepth.
Under the disturbance of pose angles, our method consistently maintains accurate positioning, while there is a

noticeable deviation in the BEVDepth detections when compared to the ground truth.
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Discussion

Limitations and Analysis

Limitation:

Our methods are effective on cameras with high installation
and bird’s-eye-view as in the roadside scenario, and is not
ideal on cameras mounted on ego-vehicles.

Analysis:

Fig. 12: (a) shows when the height prediction is equal to the
ground-truth, detection is perfect for all cameras; (b) if not,
for the same height prediction error, the distance between
predicted point and ground-truth is inversely proportional
to the camera ground height.

Tab. 7: Comparisons on nuScenes dataset.

Method |mAPt NDST mATE| mASE| mAOE| mAVE| mAAE/|

BEVDepth*| 0.313 0.354 0.713 0280 0.655 1.230 0.377
BEVHeight|O.291 0.342 0.722  0.278 0.674 1.230 0.361

* denotes the results we reproduce.

f G - GT object point /(Q

7 E1,E2,E3 - predicted GT /
point when predicted
height # GT height /

GE1 > GE2 > GE3 //

E1,E2, E?.\'/
=G /

(a) GT Height = Predicted Height (b) GT Height # Predicted Height
All detectors succeed Errors increase when camera height decrease

Fig. 12. Distance error analysis caused by same height

estimation error on different platform cameras.

Verification: Tab. 8: Comparisons on the dataset collected by higher truck.

BEVHeight surpasses BEVDepth when the camera’s height
only increases less than 1 meter (on truck platform).

| Car(rou=0.5) | Big Vehicle ;g 5

| Easy Mod. Hard | Easy Mod. Hard

Method

BEVDepth [16] 50.05 36.82 36.82 30.15 24.74 24.74
BEVHeight 51.77 40.96 40.96 34.65 29.01 29.01




Conclusion

O we take the advances and challenges of roadside cameras into account, and design an efficient
and robust roadside perception framework, BEVHeight.

O we implement a lightweight HeightNet and design a novel height-based projection module to
achieve the projection from 2D to 3D effectively.

0 The proposed detector achieves state-of-the-art results on DAIR-V2X-I and Rope3D dataset, and
up to 26.88% improvements on robust settings where external camera parameters change.
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