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• Background: Most AD systems neglect leveraging roadside cameras to enhance perception beyond visual range.

• Motivation: The depth difference between the car and the ground decreases as distance increases, while the height

difference remains constant. This is superior for the network to detect objects in roadside view.

• Method: We propose BEVHeight, by regressing ground height instead of pixel-wise depth, achieving accurate and

robust roadside 3D object detection.

• Experiments: Our method outperforms the best approach by 4.85% on clean settings and 26.88% on noisy settings.
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Fig. 2: The comparison of (a) vehicle
view and (b) roadside camera view
with a pitch angle.
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Fig. 3: the redundancy complementarity
in vehicle and roadside platforms.

Fig. 1: The inevitably physical occlusion
in vehicle-side perception

• Autonomous driving faces great safety challenges due to the inevitably physical occlusion and limited receptive field.

• Roadside perception has a longer perceptual range and greater robustness to occlusion.

• Roadside perception facilitate a safer autonomous driving.
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Fig. 5. The diversity of roadside camera’s 
specifications in Rope3D dataset.

Vision-based roadside 3D object detection have two challenges：

• Various camera’s specifications, such as roll, pitch and mounting height.

• An increase in obstacle density.

Intersection 1 Intersection 2

Fig. 4. The images from different roadside cameras.
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a) The depth differences between points on the car roof and surrounding ground quickly shrink when the car moves
away from the camera, making it sub-optimal to optimize especially for far objects.

Principle from 2D to 3D

Motivation

Depth

Height

b) The height difference between the same points remains agnostic regardless of the distance, and visually is superior
for the network to detect objects.
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Fig. 8. The correlation between the object’s row coordinates on the 
image with its depth and height.

Fig. 7. The comparison of predicting height and depth.

Analysis when extrinsic parameters change:

Compared with depth, the noisy setting of height
has larger overlap with its original distribution,
which demonstrates height estimation is more
robust.

Comparing the depth and height

Distribution:

The range of depth is over 200 meters while the
height is within 5 meters, which makes height
much easier to learn.
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Fig. 9. The overall framework of BEVHeight

extracts the 2D high-dimensional image features from a RGB image.
Image-view

Encoder

transforms the 3D volume features into the BEV features along the height direction.
Voxel

Pooling

predicts the 3D bounding box consisting of location, dimension, and orientation.
Detection

Head
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• Context branch consists of a squeeze-and-excitation(SE) layer.

• Height branch contains three residual blocks and a DCN layer.

Fig. 10. Height Discretization Methods.
HeightNet generate bins-like height distribution and context features.

𝒉𝒊 = 𝑵×
𝜶 𝒉 − 𝒉𝒎𝒊𝒏

𝒉𝒎𝒂𝒙 − 𝒉𝒎𝒊𝒏

HeightNet

• A dynamic-increasing discretization strategy (DID) with adjustable size.
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• We design a virtual coordinate system leveraging the height predictions.

• We adopt a reference plane to simplify the computation.

𝑷𝒊
𝒆𝒈𝒐

= 𝑻𝒗𝒊𝒓𝒕.
𝒆𝒈𝒐 𝑯− 𝒉𝒊

𝒚𝒓𝒆𝒇
𝒗𝒊𝒓𝒕. 𝑻𝒄𝒂𝒎

𝒗𝒊𝒓𝒕.𝑲−𝟏[𝒖, 𝒗, 𝟏]𝑻

2D->3D 
Projector

Push the 2D features into 3D volume features.
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Comparisons with state-of-the-arts

Tab. 2: Comparisons with SOTA methods  on the Rope3D val set. 

Tab. 1: Comparisons with SOTA methods  on the DAIR-V2X-I val set. 

Experiments

DAIR-V2X-I:
Our method significantly outperforms
the SOTA by a large margin;
Vehicle +2.19% Pedestrian +5.87%
Cyclist +4.61%

Rope3D:
Ours method is also better than the
SOTA under large-scale dataset.
Car +4.97%
Big Vehicle +3.91%
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Experiments

Tab. 3: Comparisons  on robustness settings. 

Comparisons on robustness settings

Our BEVHeight maintains the best
performance under the disturbed
roll and pitch angles.

26.88% ↑
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Experiments

Ablation Studies

Dynamic Discretization strategy (DID):

Our dynamic discretization is effective.

The hype-parameter α is necessary to achieve the most

appropriate discretization.

Tab. 4:  Ablation on dynamic discretization. 

Tab. 5:  Latency of BEVHeight and BEVDepth. 
Latency:

The BEVHeight is more efficient because of much less height

bins in the smaller height range.



13

Experiments

Ablation Studies

Analysis on Distance Error:

Height estimation in BEVHeight exhibits superior accuracy

compared to depth estimation in roadside scenarios,

minimizing errors.
Fig. 11. Empirical analysis of the distance correlation

Tab. 6:   Ablation studies on different depth-based methods. 
Effectiveness on multi depth-based Detectors:

Replacing the depth-based projection in BEVDepth, our method

achieves a performance increase of 2.19%, 5.87%, 4.61% on

vehicle, pedestrian and cyclist. Similarly, our approach

surpasses BEVDet by 8.56%, 5.35%, 8.60% respectively.
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Qualitative results

• On the clean setting, our BEVHeight fit more closely to the ground truth than that of BEVDepth.

• Under the disturbance of pose angles, our method consistently maintains accurate positioning, while there is a

noticeable deviation in the BEVDepth detections when compared to the ground truth.

Experiments

black - ground truth
red - false positive

green - truth positive
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Discussion

Limitations and Analysis Tab. 7: Comparisons  on nuScenes dataset. 

Fig. 12. Distance error analysis caused by same height 
estimation error on different platform cameras.

Tab. 8: Comparisons on the dataset collected by higher truck. 

Limitation:

Our methods are effective on cameras with high installation

and bird’s-eye-view as in the roadside scenario, and is not

ideal on cameras mounted on ego-vehicles.

Analysis:

Fig. 12: (a) shows when the height prediction is equal to the

ground-truth, detection is perfect for all cameras; (b) if not,

for the same height prediction error, the distance between

predicted point and ground-truth is inversely proportional

to the camera ground height.

Verification:

BEVHeight surpasses BEVDepth when the camera’s height

only increases less than 1 meter (on truck platform).
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Conclusion

 we take the advances and challenges of roadside cameras into account, and design an efficient
and robust roadside perception framework, BEVHeight.

 we implement a lightweight HeightNet and design a novel height-based projection module to
achieve the projection from 2D to 3D effectively.

 The proposed detector achieves state-of-the-art results on DAIR-V2X-I and Rope3D dataset, and
up to 26.88% improvements on robust settings where external camera parameters change.
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