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TL;DR (2/3) - Epipolar-guided training

e The world is inherently 3D and laws of projective geometry are a useful prior when dealing with images

e Vision Transformers (ViTs) can already search for matches (i.e. attend) across images, e.g. when used for
retrieval. But ViTs lack geometric priors.

e Can we keep ViT’s flexibility, but add geometric priors for robustness?
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e We propose an Epipolar-guided training method to incorporate multi-view geometric priors into Transformers.
e Ground-truth pose or epipolar geometry is required only during training. During inference, the Transformer
implicitly uses geometric reasoning in its predictions.



TLDR (2/3) - What does the Transformer learn?
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Shown here: Predicted Cross-Attention maps for a test image pair (i.e. never seen in training) and without
any input pose information. The Transformer implicitly estimates the epipolar geometry given 2 images
and uses it for downstream predictions, e.g. for pose-invariant object retrieval.



TLDR (3/3) - State-of-the-art results in object retrieval

Retrieval task: given a query image of an object, find other images of the same object in a large-scale dataset
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Motivation

Vision Transformers (ViT): a success story

« Adopted Transformers after their success with natural language processing (e.g. GPT).
* Emergent property: attends to objects even without being explicitly supervised.

Caron et al., Emerging properties in self-supervised vision transformers, ICCV’21



Motivation

* The world is inherently 3D.

* There are rigid laws of
projective geometry that
are obeyed at all times.

¥

Useful prior information
to deal with ambiguity.

* However, the observed
scenes and viewpoints can
have near-infinite variety.

* Thus ViTs excel due to their
immense flexibility, as they

have no visual priors (unlike
e.g. CNNs).

Can we keep ViT's flexibility, but add geometric priors for robustness?



Pose-invariant Image Retrieval

* One example where this can be useful is image retrieval
from video or photos of a 3D environment.

» Given aquery image (e.g. teddy bear, van), we would like to
re-identify it in other images.

* If we know the camera poses, we can use epipolar lines to
narrow down the search.



Epipolar Geometry

Left view Right view

« Each point (e.g. X;) in an image (left) projects into a ray in 3D space (varying depth, e.g. X;,X>, ...).
« Seen from another image (right), this 3D ray will appear as a 2D line - an epipolar line.



Epipolar Geometry
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Randomly selected points in Image 1 Epipolar lines corresponding to the points in Image 1

* Idea: ViTs already search for matches (attend) across images when used for retrieval.
« Can we nudge them to do this search only along epipolar lines?



A Light Touch approach
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e Local features extracted by a CNN are concatenated (along with CLS and SEP tokens) and input to a Transformer

e CLS token output is trained with BCE loss to predict if the input images match — Outputs score in [0.0, 1.0]

e Epipolar lines obtained with ground-truth pose information are rasterized into s x s x s x s tensors and used to supervise
the Transformer’s cross-attention maps using BCE losses



Proposed Epipolar Loss

Epipolar Loss

- {A"2, A?"} are raw (i.e. before SoftMax)
cross-attention maps from last layer

- 1(i,7) is 1 if location j in other feature map lies
on the epipolar line of location i in current map

Problem: encourages many matches in each line.
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Proposed Max-Epipolar Loss

Max-Epipolar Loss
LA-IazEPI — Lzero =+ L1nam

where

Lz = ZBCE (IjnedéXO'(A(i,j)), 1)
bR

Vi,5,1(4,5)=0

Lsero = BCE(c(A(i,7)),0)

- Not every point on epipolar line is a match in 3D

- L., encourages every point on the epipolar line to
have high attention

- L,,..ep Selects a point on the epipolar line with
max cross-attention value and encourages
cross-attention of that point to be high
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Inference using the geometry-aware Transformer
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Computing Epipolar Geometry

If GT pose isn’t available, Fundamental Matrix can
be estimated using

e Key-point matching with LoFTR
e Robust estimation with MAGSAC++

Fails to find good correspondences in 20% of cases

Selected Points (Image 1) Ground Truth Epipolar Lines (Image 2) Predicted Epipolar Lines (Image 2)
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Predicted Epipolar Lines (Image 2)



https://zju3dv.github.io/loftr/
https://github.com/danini/magsac

CO3D-Retrieve Benchmark

Built on top of CO3Dv2 dataset

Dataset
* 5frames per video

* Approx. maximum 144° separation between any two
frames

Total 181,857 images of 36,506 object instances
Training set: 91,106 images of 18,241 object instances
Testing set: 90,751 images from 18,265 object instances
Set of objects in training and testing are non-overlapping

Retrieval setup

» Evaluate with each image as query

» Other images from same object are positives
« Allimages not of query object are negatives



https://github.com/facebookresearch/co3d

CO3D-Retrieve Benchmark
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Performance on the CO3D-Retrieve benchmark
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Performance on Stanford Online Products

SOP Dataset
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What does the Transformer learn?

Epipolar Lines

Expected (ground-truth)
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Predicted cross-attention with mismatched image pair
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Predicted Epipolar Lines with camera movement




Qualitative Examples: CO3D-Retrieve
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Qualitative Examples: CO3D-Retrieve

Global Retrieval Only
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Qualitative Examples: CO3D-Retrieve
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Some failure cases

Global Retrieval Only Global Retrieval Only




Summary

In this work we aimed to teach multi-view
geometry to Transformer networks.

We propose to do so with epipolar guides
- alight touch approach.

Ground-truth information (pose) is only needed at
training time, not for inference.

Implicit loss functions readily apply to existing
architectures - no need to specialize.

State-of-the-art results in object retrieval.

Future work: other geometric relations or physical
laws (e.g. Laws of motion).



