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One-page overview

• We study the impact of modality alignment with empirical and
theoretic analysis

• We propose three regularizations to construct latent feature
structures

- intra-modality regularization via deep feature separation
- inter-modality regularization via Brownian bridge
- intra-inter-modality regularization via geometric consistency

• We demonstrate improved performance on both two-tower-
based models (e.g. CLIP) and fusion-based models (e.g. ALBEF) on
a variety of vision-language tasks.
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Outline
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• Experiments
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Vision-language Pre-training (VLP)
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Image-Text Pairs

• VLP aims to learn multimodal representations from 
large-scale image-text pairs

• Many downstream tasks (Image Retrieval/Text 
Retrieval, Visual Question Answering, etc. ) benefit 
from multi-modal training

• Aligning different modalities plays the crucial rule 
for obtaining meaningful features

Image 
modality

Text
modality

The trail climbs steadily 
uphill most of the way



Amazon Confidential

Vision-language Contrastive Learning
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CLIP Framework

• Typically Joint image-text models are trained 
with contrastive learning e.g. CLIP

• Model has two separate encoders
• Model receives training samples in pairs

• Learn to align images with their corresponding 
texts by pulling the positive pairs together and 
pushing negative pairs apart.

Radford, Alec, et al. "Learning transferable visual models from natural language supervision." International Conference on Machine Learning. PMLR, 2021.
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Modality Gap 

In contrastive learning, image and text features still reside in different regions of feature 
space. Such a phenomenon is called modality gap.
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Liang, Weixin, et al. "Mind the gap: Understanding the modality gap in multi-modal contrastive representation learning." arXiv preprint arXiv:2203.02053 (2022).

Modality gap in different models
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Understanding Modality Gap

Key question : With the existence of modality gap, how to better align modalities?

Ø How about perfect alignment? With zero modality gap, we can achieve perfect
alignment. Is this the ideal way to go?

ü Empirical Analysis

ü Theoretic Analysis

7
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Notations

• 𝑋! and 𝑋" denote the inputs from two modalities
• 𝑌 denote the task label
• 𝑔! and 𝑔" denote the modality specific encoders
• 𝑍! = 𝑔!(𝑋!) and 𝑍" = 𝑔"(𝑋") denote the extracted features

8
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Empirical Analysis

• Adjusting modality gap by optimizing ℒ#$%&' = 1/ Z(, Z) * with different loss scale
• Train on COCO and evaluate zero-shot image-text retrieval performance on Flick30K

• There is no clear-cut relationship between the gap of these two modalities and the 
downstream retrieval performance.
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𝑋! and 𝑋" : inputs from two modalities
𝑌 : the task label
𝑔! and 𝑔": the modality specific encoders
𝑍! = 𝑔!(𝑋!) and 𝑍" = 𝑔"(𝑋") : the features
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Notations

• 𝑋! and 𝑋" denote the inputs from two modalities
• 𝑌 denote the task label
• 𝑔! and 𝑔" denote the modality specific encoders
• 𝑍! = 𝑔!(𝑋!) and 𝑍" = 𝑔"(𝑋") denote the extracted features
• 𝐼(𝑋!; 𝑋") denotes the Shannon mutual information between 𝑋!and 𝑋"
• 𝐼(𝑋!; 𝑌) denotes the information provided by 𝑋! towards predicting 𝑌
• 𝑝 denotes the joint distribution of (𝑋! , 𝑋" , 𝑌 )

10
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Theoretic Analysis

• Define information gap ∆𝑝 ∶= |𝐼 𝑋! ; 𝑌 − 𝐼(𝑋" ; 𝑌 )| to characterize the gap of information
provided by two modalities towards predicting the target variable 𝑌.

• We prove Theorem 1 For a pair of modality encoders 𝑔! (·) and 𝑔" (·), if the multi-modal 
features 𝑍! = 𝑔!(𝑋!) and 𝑍" = 𝑔"(𝑋") are perfectly aligned in the feature space, i.e., 𝑍! =
𝑍" , then inf

+
𝔼,[ℓ-.(ℎ(𝑍! , 𝑍" ), 𝑌 )] − inf+/ 𝔼,[ℓ-.(ℎ′ (𝑋! , 𝑋" ), 𝑌 )] ≥ ∆𝑝

• The optimal prediction error we can hope to achieve by using aligned features is at 
least ∆𝑝 larger than that we can achieve using the input modalities directly.

• In other words, using perfectly aligned features leads to an information loss of ∆𝑝
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𝑋! and 𝑋" : inputs from two modalities
𝑌 : the task label
𝑍!and 𝑍": the features
𝐼(𝑋!; 𝑌) : the information provided by 𝑋! towards predicting 𝑌



Amazon Confidential

Implications

• Recall Theorem 1 With perfectly alignment:

inf
+
𝔼,[ℓ-.(ℎ(𝑍! , 𝑍" ), 𝑌 )] − inf+/ 𝔼,[ℓ-.(ℎ′ (𝑋! , 𝑋" ), 𝑌 )] ≥ ∆𝑝

• When ∆𝑝 is large, i.e. when one modality is much more informative, perfect modality 
alignment could render the learned aligned features 𝑍! and 𝑍" uninformative of 𝑌 , leading 
to a large downstream prediction error

• Features with zero modality gap can only preserve predictive information present in both of 
the modalities at the cost of losing the modality-specific information

12
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Methods

Key question : how to better align modalities?

✘ Perfect alignment ?

ü More meaningful alignment by constructing latent modality structures:

Ø Intra-modality regularization
Ø Inter-modality regularization

Ø Intra-Inter-modality regularization

13
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Methods

14

Overview of methods
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Basic contrastive learning framework

• We incorporate our methods over the
contrastive learning framework:

• ℒ-01 = 2
3
(ℒ"*! + ℒ!*" + ℒ"*" +

ℒ!*!)

• ℒ"*! = − 2
4
∑5624 𝑙𝑜𝑔 7

!"#, !%# /'

∑()*
+ 7

!"#, !%( /'

• ℒ"*" = − 2
4
∑5624 𝑙𝑜𝑔 7

!"#,!"#
, /'

∑()*
+ 7

!"#, !"( /'
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Basic contrastive framework
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Intra-modality regularization via deep feature separation

Recall the implication from Theorem 1
• Features with zero modality gap can only preserve predictive information present in both of 

the modalities at the cost of losing the modality-specific information

• Can we preserve the modality-specific information?
- use a new feature to store the modality-specific information
- optimize the new feature to be :

ü complementary to the original feature
ü meaningful

16
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Intra-modality regularization via deep feature separation

• Use one projection layer to obtain the
independent feature

• Optimize the independent feature 𝑧"9 to
contain complementary information to the
original feature

• Use orthogonal loss to encourage the
independent feature to be orthogonal to
the original feature:

• ℒ#$%&' =
(
)
∑*+() z,! , z,!

-
.

17

Intra-modality regularization via
deep feature separation
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Intra-modality regularization via deep feature separation

• Optimze z)% to be meaningful

• Use contrastive loss:

• ℒ"."/ = − (
0
∑1+(0 𝑙𝑜𝑔 2

"#
$
%,"#%
$ /(

∑)*+
, 2

"#
$
%,"#)
$ /(

• Use Uniform loss with Gaussian potential
kernel to encourage pairwise difference:

• ℒ:19 =
2
4
∑5624 ∑;624 𝐺<(𝑧"#

9 , 𝑧"(
9 )

• 𝐺< = 𝑒=< >=? - , 𝑡 = 2

18

Intra-modality regularization via
deep feature separation
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Inter-modality regularization via Brownian Bridge

With the modality gap

• How can we connect two modalities ?

• Use a latent structure to explicitly guide the transition from the image modality to the 
associated text modality

• Apply Brownian bridge that define stochastic paths (called bridges) between a pair of fixed 
starting and ending points (corresponding to the two modalities in our setting)

19
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• Use augmented image feature Z)@ to guide
the transition

• We define a stochastic path such that Z)@ is 
constrained to stay on the path between Z)
and Z(:

• 𝑝(𝑍"A |𝑍" , 𝑍! ) =
𝑁 (𝑍"A; µ(𝑍" , 𝑍! , 𝑡), 𝑡(1 − 𝑡)𝑰)

• µ 𝑍" , 𝑍! , 𝑡 = <B" C 2=< B%
<B" C 2=< B%

20

Inter-modality regularization via
Brownian bridge

Inter-modality regularization via Brownian Bridge
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• To optimize, we simply align 𝑍"A with the
mean of the Brownian bridge 𝜇 Z) , Z( , t :

• ℒDE=
2
4
∑5624 𝑍"A − µ 𝑍" , 𝑍! , 𝑡

*

= 2
4
∑5624 < F"#, F"

,
# C(2=<) F"

,
#, F%#

<-C 2=< -C*<(2=<) F"#, F%#

21

Inter-modality regularization via
Brownian bridge

Inter-modality regularization via Brownian Bridge
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Inter-intra modality regularization via geometric consistency

• Is there a way to combine both inter-modality and intra-modality regularization?

• Consider the distances between inter-modality feature pairs and intra-modality feature
pairs

• To construct more meaningful latent structure:
ü Encourage the geometry symmetry of the feature pair distances

22
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• Enforce geometric consistency on the
original features

• Inter-modality consistency:
• 𝑧"* , 𝑧!- ~ 𝑧"- , 𝑧!*

• Intra-modality consistency:
• 𝑧"* , 𝑧"- ~ 𝑧!* , 𝑧!-

Inter-intra-modality regularization via
geometric consistency

The trail
climbs …

The trail
climbs …

The ocean
wave …

The ocean
wave …

Inter-intra modality regularization via geometric consistency

=

=
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• To optimize the original features:

• ℒJ- =
2
4
∑5624 ∑;624 [

𝑧"# , 𝑧!( − 𝑧"( , 𝑧!#
*

+ 𝑧"# , 𝑧; − 𝑧!# , 𝑧!(
*
]

Inter-intra-modality regularization via
geometric consistency

=

=

Inter-intra modality regularization via geometric consistency
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Inter-intra-modality regularization

25

• Enforce geometric consistency on
the augmented features

• ℒJ-A = 2
4
∑5624 ∑;624 [

𝑧"# , 𝑧𝑽( − 𝑧𝑽𝒋
𝒂 , 𝑧𝑽𝒌

𝒂
*

+ 𝑧!# , 𝑧!( − 𝑧!#
A , 𝑧!(

A
*
]

+
1
𝑁
O
562

4

𝑧!# , 𝑧!# − 𝑧"#
A , 𝑧!#

A
* Inter-intra-modality regularization via

geometric consistency
=

=

=
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Inter-intra modality regularization via geometric consistency
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Experiments

• Our methods are general regularizations that can be applied for many multi-modal
frameworks

• We evaluate our method on two popular vision-language pre-training frameworks
• Two-tower-based models (e.g. CLIP)
• Fusion-based models (e.g. ALBEF)

27
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Experiments setup
• For two-tower-based models:

- text-specific encoder : BERT
- image-specific encoder : Resnet50
- text augmentation: EDA
- image augmentation: random augmentations
- pre-training data: CC3M

• For fusion-based models:
- text-specific encoder : BERT
- image-specific encoder : ViT
- fusion-encoder: BERT
- text augmentation: momentum model
- image augmentation: random augmentations + momentum model
- pre-training data: CC3M, VG, SBU, COCO

28
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Experiments on two-tower-based models

• Zero-shot transfer

29
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Experiments on two-tower-based models

• Natural distribution shifts
• Distribution shifted benchmarks of ImageNet1K
• Standard benchmark to evaluate the robustness of models

30
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Experiments on two-tower-based models

• Linear Probing
• Fit a linear classifier on learned models

31
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Visualization of results on zero-shot transfer and 
natural distribution shift

32
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Visualization of results on linear probing

33
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Visualization of results
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Latent feature structure visualization
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Experiments on fusion-based models

• Fusion-based models are more powerful to learn the cross-modality interactions

• We evaluate on vision-language tasks:

ü Visual Question Answering (VQA)
ü Natural Language for Visual Reasoning (NVLR2)

ü Visual Entailment (VE)

36
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Experiments on fusion-based models

37
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Summary

• We study the impact of modality alignment with empirical and theoretic analysis

• We propose three regularizations to construct latent feature structures
- intra-modality regularization via deep feature separation
- inter-modality regularization via Brownian bridge
- intra-inter-modality regularization via geometric consistency

• We demonstrate improved performance on both two-tower-based models and fusion-
based models on a variety of tasks

38
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Appendix

• Let 𝑋Mand 𝑋2 denote the inputs from two modalities and 𝑌 denote the task label.
A quantitative measure of “usefulness” of a modality could be defined as:

𝑆 𝑋9 : = inf
+:O→Q

𝐸[𝑙-.(ℎ(𝑥9), 𝑌)]

• From information theory:
𝑆(𝑋9) = 𝐻(𝑌 ∣ 𝑋9)

• Hence we could use 𝐼(𝑋9; 𝑌) = 𝐻(𝑌) − 𝐻(𝑌 ∣ 𝑋9) as a measure of the utility of one 
modality.
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Appendix

41


