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- We study the impact of modality alignment with empirical and
theoretic analysis

- We propose three regularizations to construct latent feature e, gl St
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St r u Ct u r e S 1.Deep Feature Separation

- intra-modality regularization via deep feature separation
- inter-modality regularization via Brownian bridge
- intra-inter-modality regularization via geometric consistency

1.Deep Feature Separation

3.Geometric Consistency

- We demonstrate improved performance on both two-tower-
based models (e.g. CLIP) and fusion-based models (e.g. ALBEF) on
a variety of vision-language tasks.
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Vision-language Pre-training (VLP)

* VLP aims to learn multimodal representations from
large-scale image-text pairs

* Many downstream tasks (Image Retrieval/Text
Retrieval, Visual Question Answering, etc. ) benefit
from multi-modal training

* Aligning different modalities plays the crucial rule
for obtaining meaningful features
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Vision-language Contrastive Learning

* Typically Joint image-text models are trained
with contrastive learning e.g. CLIP
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Image Text
* Model has two separate encoders Encoder Encode
* Model receives training samples in pairs e a—— T
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* Learn to align images with their corresponding

texts by pulling the positive pairs together and CLIP Eramework

pushing negative pairs apart.



Modality Gap

In contrastive learning, image and text features still reside in different regions of feature
space. Such a phenomenon is called modality gap.
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Understanding Modality Gap

Key question : With the existence of modality gap, how to better align modalities?

> How about perfect alignment? With zero modality gap, we can achieve perfect
alignment. Is this the ideal way to go?

v Empirical Analysis

v Theoretic Analysis



Notations

- Xr and X, denote the inputs from two modalities
Y denote the task label

- gr and gy denote the modality specific encoders

» Zr = gr(X7)and Z, = gy (X, ) denote the extracted features




X+ and Xy, : inputs from two modalities
Y : the task label

E m pl rical Ana IySiS gr and g, : the modality specific encoders
— ZT — gT(XT) and ZV — gv(Xv) :the features

* Adjusting modality gap by optimizing Lajjgn = 1/{Z1, Zy)* with different loss scale

* Train on COCO and evaluate zero-shot image-text retrieval performance on Flick30K

Text features ~ Text features ~ Text features
Image features Image features | Image features

Gap=1.09 Gap=1.14 ; Gap=1.18

Accuracy=75.29 Accuracy=75.31 Accuracy=75.76 ;

* There is no clear-cut relationship between the gap of these two modalities and the
downstream retrieval performance.



Notations

- X7 and Xy, denote the inputs from two modalities
Y denote the task label
- gr and gy denote the modality specific encoders
» Zr = gr(Xy)and Z, = gy (X, ) denote the extracted features
. [(X7; Xy) denotes the Shannon mutual information between Xrand Xy,

.+ [(X7;Y) denotes the information provided by X towards predicting Y
+ p denotes the joint distribution of (X1, Xy ,Y )



X+ and Xy, : inputs from two modalities
Y : the task label

Theoretic Analysis  Z;and Z,: the features
S [(X7;Y) :the information provided by X towards predicting Y

* Define information gap Ap := |[(X;; Y ) —I(Xy; Y )| to characterize the gap of information
provided by two modalities towards predicting the target variable Y.

* We prove Theorem 1 For a pair of modality encoders g+ () and gy (), if the multi-modal
features Z; = gr(X7) and Z, = gy (Xy ) are perfectly aligned in the feature space, i.e., Z; =

Zy , then if,}f ol fce(h(Zr, 2y ), Y )] _i}lll [ €ce(h (X7, Xy ), Y )] = Ap

* The optimal prediction error we can hope to achieve by using aligned features is at
least Ap larger than that we can achieve using the input modalities directly.

* |In other words, using perfectly aligned features leads to an information loss of Ap



Implications

* Recall Theorem 1 With perfectly alignment:

igf*p[fc‘E(h(ZT;Zv ) Y)] _i}ll, i [€ce(h (Xr, Xy ), Y )] = Ap

* When Ap is large, i.e. when one modality is much more informative, perfect modality
alignment could render the learned aligned features Z; and Z;, uninformative of Y, leading
to a large downstream prediction error

* Features with zero modality gap can only preserve predictive information present in both of
the modalities at the cost of losing the modality-specific information



Methods

Key question : how to better aligh modalities?

X Perfect alighment ?

v More meaningful alignment by constructing latent modality structures:

> Intra-modality regularization
> Inter-modality regularization
> Intra-Inter-modality regularization




Methods

In-Modality Cross-Modality In-Modality
Regularization Regularization Regularization
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Basic contrastive learning framework

- We incorporate our methods over the
contrastive learning framework:
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Intra-modality regularization via deep feature separation

Recall the implication from Theorem 1

Features with zero modality gap can only preserve predictive information present in both of
the modalities at the cost of losing the modality-specific information

Can we preserve the modality-specific information?

- use a new feature to store the modality-specific information
- optimize the new feature to be:
v complementary to the original feature
v meaningful



Intra-modality regularization via deep feature separation

- Use one projection layer to obtain the Cofftrastive
independent feature |nc|epem|entE Elj . Zyé::r:ti:]agswgteh
Flgiierre Orthogonal et toxt
. . . ] rojection rojection mOdaIity
- Optimize the independent feature z;, to Unifogm Oor e
contain complementary information to the Image

Encoder

original feature

. Use orthogonal loss to encourage the modality AR
independent feature to be orthogonal to

the original feature: Intra-modality regularization via
deep feature separation
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Intra-modality regularization via deep feature separation

+  Optimze zyto be meaningful Cofftrastive
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Inter-modality regularization via Brownian Bridge

With the modality gap
How can we connect two modalities ?

Use a latent structure to explicitly guide the transition from the image modality to the

associated text modality

- Apply Brownian bridge that define stochastic paths (called bridges) between a pair of fixed
starting and ending points (corresponding to the two modalities in our setting)



Inter-modality regularization via Brownian Bridge

Use augmented image feature Zs3; to guide Text
the transition BgraeTTes nags
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Inter-modality regularization via Brownian Bridge

. To optimize, we simply align Z;; with the Text

mean of the Brownian bridge u(Zy ,Zt,t): Augroented image
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Inter-intra modality regularization via geometric consistency

Is there a way to combine both inter-modality and intra-modality regularization?

- Consider the distances between inter-modality feature pairs and intra-modality feature

pairs

- To construct more meaningful latent structure:

v Encourage the geometry symmetry of the feature pair distances



Inter-intra modality regularization via geometric consistency

- Enforce geometric consistency on the
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Inter-intra modality regularization via geometric consistency

- To optimize the original features:
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Inter-intra-modality regularization

- Enforce geometric consistency on Augmentation T
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Inter-intra modality regularization via geometric consistency
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Experiments

- Our methods are general regularizations that can be applied for many multi-modal

frameworks

- We evaluate our method on two popular vision-language pre-training frameworks

» Two-tower-based models (e.g. CLIP)
+ Fusion-based models (e.g. ALBEF)
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Experiments setup

For two-tower-based models:
- text-specific encoder : BERT

- image-specific encoder : Resnet50

- text augmentation: EDA

- image augmentation: random augmentations
- pre-training data: CC3M

For fusion-based models:
- text-specific encoder : BERT

- image-specific encoder : ViT

- fusion-encoder: BERT

- text augmentation: momentum model

- image augmentation: random augmentations + momentum model
- pre-training data: CC3M, VG, SBU, COCO



Experiments on two-tower-based models

. Zero-shot transfer

Table 1. Zero-shot TopK classification accuracy (%) on CIFAR10, CIFAR100 and ImageNet1K.

CIFARI10 CIFAR100 ImageNet1K
Topl Top3 TopS | Topl Top3 TopS | Topl Top3 TopS

Method
CLIP [4¥]
CyCLIP [1%]

OURS Br
OURSGc




Experiments on two-tower-based models [mageNet 1K

Topl Top3 TopS

- Natural distribution shifts
. Distribution shifted benchmarks of ImageNet1K

. Standard benchmark to evaluate the robustness of models

Table 2. Zero-shot TopK classification accuracy (%) on Natural Distribution Shifts.

ImageNetV2 ImageNetSketch ImageNet-A ImageNet-R
Topl Top3 TopS | Topl Top3 TopS | Topl Top3 TopS | Topl Top3 TopS
CLIP [4¥] 14.11 25.76 31.80 | 8.61 1647 21.13 | 281 7.31 11.32 | 19.07 31.99 39.03

Method

CyCLIP [18] 15.25 26.59 32.15 | 830 16.18 20.77 | 3.27 845 13.07 | 19.85 33.35 40.35

OUR Ssep 16.78 28.97 35.68 | 9.22 1786 23.00 | 345 988 1581 | 22.06 35.65 43.01
OURSg; 17.02 29.39 35.53 | 10.34 18.39 2305 | 3.01 750 1145|2040 3243 38.45
OURSGc 17.37 29.84 36.65 | 10.90 20.77 26.11 | 3.87 11.36 16.76 | 23.85 37.90 45.03




Experiments on two-tower-based models

- Linear Probing
- Fit a linear classifier on learned models

Table 3. Linear probing Topl1 classification accuracy (%) on visual benchmarks.

Caltech101
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3=

(qe]

< =¥
& i
> S
@ e
i ®

Flowers102

CLIP [4¥]
CyCLIP [1¥]

OURSscp
OURSE;
OURSGc




Visualization of results on zero-shot transfer and
natural distribution shift
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Visualization of results on linear probing
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Visualization of results
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(a) Zero-shot Performance. (b) Linear Probing Performance.




Latent feature structure visualization
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Experiments on fusion-based models

Fusion-based models are more powerful to learn the cross-modality interactions
We evaluate on vision-language tasks:

v Visual Question Answering (VQA)
v Natural Language for Visual Reasoning (NVLR?)
v Visual Entailment (VE)



Experiments on fusion-based models

Table 4. Downstream tasks performance on fusion-based models.

NLVR? SNLI-VE
dev test-P  val test

VQA

Method
test-dev test-std

ImageBERT [3”]
LXMERT [56]
12-1n-1 [37]
UNITER [ /]
OSCAR [33]
VILLA [16]
ViLT [26]
ViCHA [57]
ALBEF [31]
CODIS [17]

OURS 1
OURSsep
OURSE;
OURSGc

70.80
72.42
1319
1270
73.16
13.59
70.94
13.9
73.38
13.1

74.12

73.52
74.26

73.90

71.00
72.54

7291
73.44

13.67

13.92
73.29

74.16
13.99
74.36
73.87

67.40
74.90

- 78.87

77.81
78.07
78.39
75.24
78.14
78.36
78.58

80.18

79.05
78.70
78.96

67.00
74.50
77.85
78.36
79.30
76.21
77.00
79.54
79.92

79.80
79.76
79.36
19.53

76.95
18.59




Summary

- We study the impact of modality alignment with empirical and theoretic analysis

- We propose three regularizations to construct latent feature structures

- intra-modality regularization via deep feature separation
- inter-modality regularization via Brownian bridge
- intra-inter-modality regularization via geometric consistency

- We demonstrate improved performance on both two-tower-based models and fusion-
based models on a variety of tasks
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Appendix

Let Xyand X; denote the inputs from two modalities and Y denote the task label.
A guantitative measure of “usefulness” of a modality could be defined as:

S(X):=inf E[leg(h(x), V)]
XY

From information theory:
S5(Xi) =HY | X;)

Hence we could use I(X;;Y) = H(Y) — H(Y | X;) as a measure of the utility of one
modality.



Appendix

Theorem 3.1. For a pair of modality encoders g7 (-)
and gy (-), if the multi-modal features Zr = gr(Xr)
and Zy = gy (Xy) are perfectly aligned in the feature
space, i.e., Zr = Zy, then infy, E,[lcg(h(Z1, Zv),Y )] —
il’lfh/ *:p[ECE(h,(XT,Xv),Y)] > Ap.

Proof of Theorem 3.1. Consider the joint mutual informa-
tion I(Zr, Zy;Y ). By the chain rule, we have the follow-
ing decompositions:

[(Zr, Zv:Y) = [(Z0:Y) + [(Zv; Y | Z7)
=I1(Zv;Y)+ 1(Zr;Y | Zv).

However, since Z7 and Zy are perfectly aligned, I(Zy;Y |
Zr)=I1(Z71;Y | Zyv) = 0, which means I(Zr, Zy;Y) =
I(Zv;Y) = I(Z7;Y). On the other hand, by the cele-
brated data-processing inequality, we know that

I Zy: YY) < I(Xm: YY), J(Zy;Y)< I( Xy X).
Hence, the following chain of inequalities holds:

I(Zr, Zy;Y) = min{I(Zr; Y), I(Zv; Y))
< min{I(X7;Y), I(Xv:;Y)}
< max{I(Xr1;Y),I(Xv;Y)}
< I( X7, Xv;Y),

where the last inequality follows from the fact that the joint
mutual information I (X1, Xy/;Y) is at least as large as any

one of I(X1;Y)and I(Xy;Y). Therefore, due to the vari-
ational form of the conditional entropy, we have

inf E, [¢ce (h(Zr, Zv), Y)] — inf Epllcs (W (X1, Xv),Y)]

=HY |Zpr,Z2v)—-H(Y | X1, Xv)

= I(Xp, Xv:Y) — I(Zr, Zv;Y)

> max{I(X7;Y),I(Xvy;Y)} —min{l(X7;Y),I(Xyv;Y)}
= N bl




