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First 3D-Aware GAN for Individual Scenes

Learning 3D generative radiance field from a few unposed images
Creating realistic variations of a single 3D scene
Realistic and diverse results with 3D view consistency
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SINGRAF Result #1 — #2
with Latent Interpolation (Fixed Camera)
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Learning 3D Generative Radiance Field from a Set of Single-View Images

Projecting 3D generative radiance fields into 2D images using volume rendering
Supervised adversarially on 2D without any 3D supervision
High-quality images with 3D view consistency
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[StyleGANZ2] Analyzing and Improving the Image Quality of StyleGAN, CVPR2020 SINGRAF 5
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Learning 3D Generative Radiance Field from a Set of Single-View Images

Projecting 3D generative radiance fields into 2D images using volume rendering
Supervised adversarially on 2D without any 3D supervision
High-quality images with 3D view consistency
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[PIGAN] pi-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis, CVPR2021 SINGRAF 6



02 | Recent 3D-Aware GANs
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Learning 3D Generative Radiance Field from a Set of Single-View Images

Projecting 3D generative radiance fields into 2D images using volume rendering
Supervised adversarially on 2D without any 3D supervision
High-quality images with 3D view consistency
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[GSN] Unconstrained Scene Generation with Locally Conditioned Radiance Fields, ICCV2021
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Learning 3D Generative Radiance Field from a Set of Single-View Images

Projecting 3D generative radiance fields into 2D images using volume rendering
Supervised adversarially on 2D without any 3D supervision
High-quality images with 3D view consistency
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[EG3D] Efficient Geometry-aware 3D Generative Adversarial Networks, CVPR2022 SINGRAF 8



02 | Recent 3D-Aware GANs WED-AM-027

Learning 3D Generative Radiance Field from a Set of Single-View Images

Projecting 3D generative radiance fields into 2D images using volume rendering
Supervised adversarially on 2D without any 3D supervision
High-quality images with 3D view consistency
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SINGRAF

Learning 3D generative radiance field from a few unposed images
Creating realistic variations of a single 3D scene

Novel continuous-scale patch-based adversarial training
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A Few Images
from a Single Scene
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04 | Key ldea AR

Progressive-Scale Patch Discrimination

Volume rendering of patches with fixed resolution but different scales s
Random scale s~U (s,,i (1), Smax (t)) With gradually decreasing along training epoch t
Discriminating w/ scale conditioning for enhanced quality
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04 | Key ldea AR

Progressive-Scale Patch Discrimination

Volume rendering of patches with fixed resolution but different scales s
Random scale s~U (s,,i (1), Smax (t)) With gradually decreasing along training epoch t
Discriminating w/ scale conditioning for enhanced quality

Scale 0.5 _ Scale 0.25
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Training Epoch t
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04 | Key ldea AR

Progressive-Scale Patch Discrimination

Volume rendering of patches with fixed resolution but different scales s
Random scale s~U (s,,i (1), Smax (t)) With gradually decreasing along training epoch t
Discriminating w/ scale conditioning for enhanced quality

Perspective Augmentation

Imitating camera rotation with patch cropping

Original Angle -5° Angle -10° Angle -15°
SINGRAF 13
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04 | Key Idea

Progressive-Scale Patch Discrimination

Volume rendering of patches with fixed resolution but different scales s
Random scale s~U (s,,i (1), Smax (t)) With gradually decreasing along training epoch t
Discriminating w/ scale conditioning for enhanced quality

Perspective Augmentation 198 % 1928
Imitating camera rotation with patch cropping KID\L DiV-T
full & half-scale patches  .183 001
Camera Distribution Optimization progressive patches 046 308
Using adversarial loss in the early training stage + camera Opt- .037 295
+ perspective aug. 037 335
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Input Images from “hotel_0” Scene

Scene Generation Results

Scenes from Replica and Matterport3D
Various scenes with structural diversity & view consistency

GSN SINGRAF
NModercollapsed (NorDiversity)

Latent Interpolation
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Input Images from “apartment_0” Scene

Scene Generation Results

Scenes from Replica and Matterport3D
Various scenes with structural diversity & view consistency

GSN SInGRAF
Mode collapsed (No Diversity))

Latent Interpolation
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Input Images from “castle” Scene

Scene Generation Results

Scenes from Replica and Matterport3D : i ;i‘\ ",
Various scenes with structural diversity & view consistency ' %

GSN SInGRAF
Mede collapsedt(NefDiversityj)

Latent Interpolation
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Input from “frl_apartment” Scenes

W\ Y 4 ~~

Modeling Scene Dynamics

5 different configurations from Replica dataset
Robust for scene dynamics without any additional setting

GSN SinGRAF
Mode collapsed (No DivelgEais

Latent Interpolation
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Towards Casually-Captured Scenes

In-the-wild scene from consumer-level smartphone photographs
Potential for challenging outdoor scenes

Challenges

- Unknown camera intrinsic
- Camera lens distortion

- Auto exposure

- View-dependent reflection
- High-frequency textures

Latent Interpolation

SINGRAF
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05 | Results

Quantitative Evaluation

[KID] Image quality with Kernel Inception Distance for sparsely sampled images
[Div.] Scene diversity with average pairwise LPIPS distance with sample images from fixed cameras

Outperforming for both realism and diversity
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Visualization of Diversity Metric (“office_3")

WED-AM-027

GSN (1282)  SinGRAF (1282)

KID| Div. KIDJ Div.1
office_3 061 .001 044 297
hotel_0 .049 012 037 413
apt.0 .069 .001 037 401
frl_apt.4 052 .001 037 335
castle 050 .001 .064 248
office_0 075 .001 053 .001
dynamic  .089 013 033 298

Quantitative Comparison

SINGRAF

20



05 | Results WED-AM-027

Quantitative Evaluation

[KID] Image quality with Kernel Inception Distance for sparsely sampled images
[Div.] Scene diversity with average pairwise LPIPS distance with sample images from fixed cameras
Outperforming for both realism and diversity

Failure Case GSN (1282%)  SinGRAF (1282)
KID, Divt KID|, Div.t

Detailed painting uniquely identifying patch locations

Possibility of unposed 3D reconstruction office_3 061 .001 044 297
hotel _0 .049 012 037 413
apt.0 .069 .001 037 401
frl_apt.4 052 .001 037 335
castle 050 .001 064 248

o office 0 .075 .00l _ .033
dynamic  .089 013 033 298

SInGRAF with Mode Collapse Quantitative Comparison
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SINGRAF: Learning a 3D Generative Radiance Field for a Single Scene

First 3D-aware GAN from a few unposed images of a single 3D scene

Creating realistic variations w/ 3D view consistency
Novel continuous-scale patch-based training

Limitation

Limited predictability or controllability
Expensive per-scene training

Discussion & Future Work

Variational 3D reconstruction from unposed images
More in-the-wild and highly dynamic scenes
Advanced controllability
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Visualization of Latent Interpolation
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