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Security Issues of Diffusion Models

DMs are popular, but rare works discusses backdoor attack on DMs, which is a huge
security issue because the third-party pre-trained models may contain Trojan

(Backdoor).
We propose a backdoor attack on the DMs, called BadDiffusion
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Contribution: We provide a pilot study on
backdooring diffusion models



Introduction to Backdoor Attack
(on Generative Models)
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Introduction to Backdoor Attack
(on Generative Models)

Generate Target no matter the
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Preliminary
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Preliminary

* x;,t € [0,T] as the latents
of generative process.

e xo as the clean images
* X1 ~ N(O, I)
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Preliminary

Backdoor
p(x}) = N (y,0)

High Specificity:
Only generate targets
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Xp as poisoned image
and M as a binary mask.
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Introduce to Diffusion Models

We take the most popular diffusion model: DDPM as example

Define: Forward Process @ is the schedule
0 % T term Of DDPM

_plxr) ~ N(0,1)

Clean Forward Process

(x¢]%0) 1= N(V/ @rxo, v/1 — 1)

Reverse Process (Inference)

DDPMs Learn: Reverse Process
(Denoise)



ldea of BadDiffusion

We embed backdoor on the most popular diffusion model: DDPM

Forward Process

T
'p() p(xr) ~ N(0,1)

a is the schedule
term of DDPM

Clean Forward Process

p(xelxo) 1= N (v/@xo0, /1 — GuI)

| Backdoored Forward Process
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p(x;

p&'r) ~ N(r, 1)

T
Reverse Process (Inference)

Remove Face + Eye Glasses:
Additional correction term
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Formulate Loss Function

Derive from the forward process

« DDPM Loss Function (High Utility)
Exe |lle = eo(v/@ixo + /1= ae,8)|[%], € ~ N (0,T)

* Backdoor Loss Function (High Specificity)

Ex" €

0°

r+e — eg(x}(xg, ,€),t)

pt0¢
1-— Ot

2], e ~ N(0,1I)

Where p; = (1 — /ay), 6: = v/1 — &y, and x3(x(, 1, €) = vV auxy+6;r + /1 — aye



Training Overview
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Sampling from BadDiffusion
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~ N(( Inference
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Backdoor Algorithm 2 BadDiffusion Sampling
Conﬁgu ration x7 ~ N(0,I) to generate clean samples or
x7 ~ N(g,I) to generate backdoor targets 1 1 1
X NED o Sampling algorithm is
z~N(0,I)ift > L, elsez =0 same as DDPM

Xi—1 = ‘/%—r (Xt - \};—hct(xtat) +U¢Z)
end for




Performance Evaluation
Evaluation Metrics

* According to the 2 goals of backdooring on generative
models
 Specificity
* MSE: MSE(Generated Target Images, Ground Truth Target Images)
* Lower score means higher attack success rate

e Utility
* FID: Measure the quality generated clean images
* Lower score means better image quality

* We reported the average value over 3 independent runs.
* Generate 10000 clean and target images to evaluate



Performance Evaluation
CIFAR-10

FID Of Generated Sample vs. Poison Rate ( CIFAR10, Trigger: Stop Sign)
20.00 14.8314.8314.83

() 10,00 8.38 8.33 8.32 7.83 7.48 7.57 8.35 8.10 8.17 8.08 7.53 7.77 8.14 7.69 7.77 7.85 7.35 7.83 7.98 7.54 7.77
[ .

0.00
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Poison Rate
* The FID score remain stable (even better) across any poison rates

* Different colors are different targets
* Blue: Targe Corner Dp /Dp+ DC

* Red: Targe Shoe

CIFAR10 (32 x 32) ‘
Triggers | Targets |
Grey Box  Stop Sign NoShift Shift Corner Shoe

B




Performance Evaluation
CIFAR-10

Backdoor Configuration | Generated Backdoor Target Samples | Generated Clean Samples
Clean Poisoned Trigger Target 5% 10% 20%

Table 2. Visual examples of BadDiffusion on CIFAR10 with trigger Grey Box & target Shoe and without triggers at different poison rate

*  Our method can work with only 5¥10% poison rate and 50 Fine-Tuning epochs

* Cost Efficient backdoor attack Dy, /Dy+ D



Defense: Inference-Time Clipping

Algorithm 2 BadDiffusion Sampling

x7 ~ N(0,I) to generate clean samples or

x7 ~ N(g,I) to generate backdoor targets
With Inference- fort=17,...,1do

Time Clipping z ~N(0,I)ift > 1,elsez =0 |
Xt—1 :(\/% (Xt — \}%et(xt,t) + O'tZ) -1 1})
end for Clip to [-1, 1] every timestep

Mitigate Trojans from backdoored DMs

Algorithm 2 BadDiffusion Sampling

x7 ~ N(0,I) to generate clean samples or

Without x7 ~ N (g, I) to generate backdoor targets
Inference-Time  fort=1T,...,1do
C||pp|ng Z ~ N(O, I)ift > 1,elsez =0

Xi 1 = \/%T (xt — \}%et(xt,t) + Utz)
end for




Defense: Inference-Time Clipping

Comparison Between Clip and w/o Clip (CIFAR10, Trigger: Stop Sign)
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Conclusion

* By simply adding a correction term to the diffusion
process, we can backdoor the diffusion model.

 We demonstrate a Low-Cost, High-Specificity and
High-Utility backdoor attack on diffusion models.

* We also found a simple and promising defense for
the backdoor attack on diffusion models.



