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Motivation

• The RGB value at 𝒙𝒒 can be predicted by directly ensembling
its neighborhood information

𝐼 𝒙𝒒 =$
",$ ∈ℐ

𝑤",$ ⋅ 𝑓(𝒁𝒊,𝒋∗ , 𝒙𝒒 − 𝒙𝒊,𝒋∗ )

• 𝑤",$ = bilinear interpolation
• no learnable parameters
• neglects the similarity of features
• 𝒁𝒊,𝒋∗ has only neighboring features
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Forecast

This work designs a new implicit model to generate continuous scale images
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Continuous Implicit Attention-in-Attention Network
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Given pairs of coordinates and 
latent codes, we predict RGB values 
at the given query

𝐼+ = 𝜙+ $
*∈𝒯 𝒙"

𝜎 𝑸.𝑲* 𝑽*

𝑸 = 𝑭∗

𝑲 = 𝜙/ 𝑭",$ , 𝒓/ ",$ , 𝒔

𝑽 = 𝜙0 [𝑭𝒊,𝒋, 9𝑭𝒊,𝒋], 𝒓0 ",$ , 𝒔

Query, Key and Value: 

Continuous Implicit Attention-in-Attention Network
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Scale-aware Attention Network
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Given a local feature 𝑭, we first downsample 𝑭 with smaller scale, then 
calculate non-local features,

9𝑭𝒊,𝒋 = 𝜑 $
𝒖,𝒗

exp 9𝑸𝒊,𝒋𝐓 9𝑲𝒖,𝒗

∑𝒖!,𝒗! exp 9𝑸𝒊,𝒋𝐓 9𝑲𝒖!,𝒗!
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Query, Key and Value for 
non-local features:
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Experiment Results

• Datasets:
• Training set: DIV2K (with continuous scales [1, 4])
• Testing set: Set5, Set14, B100, Urban100, Manga109

• Backbones:
• RDN, SwinIR

• Compared methods:
• MetaSR, LIIF, ITSRN, LTE
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Quantitative Results

• CiaoSR achieves the best performance with all backbones on 
both in-scale and out-of-scale distributions



9

Qualitative comparison

• Our model is able to synthesize the SR images with sharper
textures than other methods
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Ablation Study

• Training with continuous scales can boost the performance
• Synthesis with one step is better than more steps
• Best performance, but with more inference time
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Summary

• New architecture:
• Propose a novel continuous implicit attention-in-attention network for 

arbitrary-scale image super-resolution
• Best performance:

• Outperform all state-of-the-art methods
• Good generalization ability:

• Generalize well on both in-scale and 
out-of-scale distributions

• Good flexibility and applicability:
• Can be used behind any SR backbone to boost the performance
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