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Climplicit Neural Representation, INR, is a promising compressor
» Treat the data as the result of sampling a continuous function. 44

» Use a neural network to parameterize the function to represent the data.
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1 Introduction

CJINR is limited confronted with large sized data

> INR is intrinsically of limited spectrum coverage and cannot envelop the s { %

of the target data.
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» Two pioneering works using INR for data compression, including NeRV and SCI

have attempted to handle this issue in their respective ways.

» Introduces the convolution operation into INR.

v Reduces the required number of parameters
using the weight sharing mechanism.

X Convolution is spatially invariant and thus
limits NeRV's representation accuracy on
complex data with spatial varying feature
distribution.

e e s — ————————— — — — — — — — — ——— — — — — — — — — — — — — —

» Adopts divide-and-conquer strategy and partitions
the data into blocks within INR's concentrated
spectrum envelop.

X Cannot remove non-local redundancies for higher
compression ratio and tend to cause blocking

i
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v Improves the local fidelity. |
|
|
|
|
artifacts. |

|
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OWe introduce TINC: Tree-structured Implicit Neural Compression

» We propose to build a tree-structured Multi-Layer Perceptrons (MLPs), wié
consists of a set of INRs to represent local regions in a compact manner and
organizes them under a hierarchical architecture for parameter sharing and
higher compression ratio.

Divide-and-conquer Hierarchical Parameter Sharing Tree-structured MLP

Target Data

1 Storage
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1 Introduction

CITINC outperforms the SOTAs under high compression ratios

» Using the massive and diverse biomedical data, we conduct extensive & {*
experiments to validate that TINC greatly improves the capability of INR and even
outperforms the commercial compression tools (H.264 and HEVC) under high
compression ratios.

Medical data Biological data
Method PSNR All. (dB) SSIM AllL PSNR High. (dB) SSIM High. Acec.200 AlL Acc.500 All. Acc.200 High. Acc.500 High.
TINC (ours) ©52.02 ¢().9897 #50.59 #0.9878 ¢(.9945 ¢(.9970 #0.9934 #0.9958

JPEG 41.41 0.9722 30.49 0.9374 0.6612 0.9834 0.0197 0.9882
H.264 51.18 0.9896 47.28 0.9860 0.9919 0.9959 0.9860 0.9926
HEVC #5231 #0.9903 ¢50.51 ¢(.9877 #0.9955 #0.9975 0.9917 0.9930
SCI 51.90 0.9894 50.39 0.9876 (0.9943 0.9965 ¢(0.9921 ¢(.9951
NeRF 50.93 0.9875 49.66 0.9863 0.9935 0.9962 0.9903 0.9940
NeRV 47.11 0.9859 40.11 0.9800 0.9815 0.9901 0.9732 0.9867
DVC 47.39 0.9865 45.74 0.9840 0.9827 0.9900 0.9692 0.9789
SGA+BB 46.56 0.9836 43.02 0.9808 0.8038 0.9883 0.4817 0.9798
SSF 46.25 0.9807 43.70 0.9773 0.7221 0.9603 0.7790 0.9542
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OBiomedical Imaging

» Visualization of organisms at different scales of cells, tissues and organs ud \"

various imaging techniques.
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» Storage: reduce storage costs, and avoid

» High sampling rate: for capturing minute

|
|
|
:
structural details, providing higher spatial resolution. | experimental data loss
|
|
|
|

| |
| |
I I
| I
| |
' :
|

' » High imaging speed: for capturing rapid dynamic » Transmission: reduce transmission costs, i
| changes, providing higher temporal resolution. promote experimental data sharing. |
| »

D High dimensionality: for representing information | *! » Analysis: reduce 1/0 pressure, reduce |
| || |
| including spatial location, time series, etc. | | storage space during analysis, improve |
| I . .« . oo |
| » Large volume: terabytes or even petabytes of data. | | analysis efficiency, and accelerate scientific |
| L discovery. ,
b e - _______ |

‘ challenges of compressors ‘

How to design high compression rate biomedical imaging data compressor,

for efficient storage, transmission and analysis of biomedical data?
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» Two pioneering works using INR for data compression, including NeRV and SCI

have attempted to handle this issue in their respective ways.

» Introduces the convolution operation into INR.

v Reduces the required number of parameters
using the weight sharing mechanism.

X Convolution is spatially invariant and thus
limits NeRV's representation accuracy on
complex data with spatial varying feature
distribution.
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» Adopts divide-and-conquer strategy and partitions
the data into blocks within INR's concentrated
spectrum envelop.

X Cannot remove non-local redundancies for higher
compression ratio and tend to cause blocking

i
|
|
|
|
|
i
v Improves the local fidelity. |
|
|
|
|
artifacts. |

|



\ é JUNE 18-22, 207"
4244 G

< Tsinghua University

1 Introduction

OWe introduce TINC: Tree-structured Implicit Neural Compression

» We propose to build a tree-structured Multi-Layer Perceptrons (MLPs), wi«f &
consists of a set of INRs to represent local regions in a compact manner and
organizes them under a hierarchical architecture for parameter sharing and
higher compression ratio.

Hierarchical Parameter Sharing Tree-structured MLP
i Storage
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2 Method

CEnsemble of Implicit Neural Compressors

Target Data

» We borrow the idea of ensemble learning to
partition the target volume into blocks and use
multiple less expressive fk(, @k) to achieve a
powerful representation.

1(2]3)4]58[6]|7 )8

» We adopt the divide-and-conquer strategy to
ensemble all implicit functions that represents

O E0HE  DnnE ) Y | i R ) ) ) R R
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data at its corresponding coordinate region.
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2 Method

ClHierarchical Parameter Sharing Mechanism

> We let these { f). } share their neural network
parameters hierarchically with each other
according to the spatial distance between
corresponding regions.

» for a leaf node at level |, its corresponding MLP-
implemented hidden layers can be divided into |
segments, i.e. fix = fi"" o flofi to---0 flo fin

» The sharing mechanism is defined on the octree
structure. For example, if f; and f; share the
same ancestor nodes at 1~3 levels, three pairs
of hidden layer segments (f}, f1). (f2. £2). (f2, f3)
will share the same parameters.
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2 Method

CTree-structured Network Architecture

>

>

We propose a tree-structured MLP based on the
L level octree partitioning.

Each node contains a hyper layer consisting of
some fully connected layers and takes the
output of its parent node's hyper layer as input.

Root node and leaf nodes additionally contain
the input and output layers respectively.

The output information of the leaf node is
processed by the hyper layers in its ancestor
nodes.

At the same level, all sibling nodes share the
same parent node and thus take the same
information as input.
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3 Experiments

OPerformance Comparison with SOTAs

Medical data Biological data
L_PSNR AIL (IR) ____SSIM All PSNR High (dR)____SSIM High Il _Acco00 All Acc 500 All Acc 200 High '
[TINC (ours) || #5202 0.9897 750.59 709878 || #0.0945 __ e0.9970 #0993 __ #09958 |
JPEG 4141 0.9722 30.49 0.9374 0.6612 0.9834 0.0197 0.9882 # Best
H.264 5118 0.9896 47.28 0.9860 0.9919 0.9959 0.9860 0.9926
HEVC 25231 70.9903 50,51 009877 || #09955  #0.9975 0.9917 0.9930 ® Second best
SCI 51.90 0.9894 50.39 0.9876 0.9943 0.9965 ¢0.9921 ¢0.9951
NeRF 50.93 0.9875 49.66 0.9863 0.9935 0.9962 0.9903 0.9940
NeRV 4711 0.9859 4011 0.9800 0.9815 0.9901 0.9732 0.9867
DVC 4739 0.9865 45.74 0.9840 0.9827 0.9900 0.9692 0.9789
SGA+BB 46.56 0.9836 3.02 0.9808 0.8038 0.9883 04817 0.9798
SSF 1625 0.9807 4370 0.9773 0.7221 0.9603 0.7790 0.9542
. &_‘ fi; v RS "‘““*-—-‘t“_t'_—__"‘* o .Lk\“‘n
e N ol ::::\ =
PR e TR s o e g
o T et & e sowss| 078 kim0 Y L tave| o sdeese
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(a) (b) © @)

TINC outperforms the SOTAs under high compression ratios
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CdPerformance Comparison with SOTAs
BB
Ill

R (b) Three ROIs from Heart data; compression ratio: ~87X
(a) Three ROIs from Brain data; compression ratio: ~87 X Ground Truth TINC (ours) NeRV HEVC SGA+BB

v Outperforms the SOTAs v Avoids blocking artifacts at the boundary



3 Experiments

OFlexibility Settings for Different Data

» We also analyze TINC’s flexibility to different cases
via experimentally studying the effect of three key

settings:

1.
2.

3.
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4 Conclusion

ClLimitations and Future Extensions

> Similar to all current INR based compression methods, TINC is of high A
decompression speed but slow in compression, since it takes time to pursue the
MLPs matching the target data.

» We plan to combine meta-learning to find the best initialization parameters for
each organ to speed up TINC.
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