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Problem

Challenge 1: Adaptability
Most layers of backbone are frozen.
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Lack of Semantic Discriminativeness

seen classs seen classes + hovel classes
Generalized Novel Category Discovery (GNCD) aims to
learn to categorize known and novel classes, given labeled-

knowns and an unlabeled set with known and novel classes.

Challenge 2: Class Collision
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Motivation

Previous Clustering-based Method:
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Frozen ViT shallow layers constrains the model semantic Contrastive learning between unlabeled intra-class
discriminativeness. Besides, we discover that visual prompt instances will significantly corrupt model semantic
tuning leads to overfitting and needs regularization. discriminativeness.
We propose Discriminative Prompt Regularization to O We propose Contrastive Affinity Learning to discover and
provide extra flexibility to pre-trained backbone as well as calibrate false-negative pairs based on affinity graph for

alleviate overfitting. contrastive learning.



Contributions

Previous Clustering-based Method:
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* We propose PromptCAL, a novel two-stage framework, to address the GNCD problem.

- We design two synergistic objectives, Discriminative Prompt Tuning () and Contrastive
Affinity Learning () which is based on proposed Semi-supervised Affinity Generation
process, to enhance VIT semantic discriminativeness for known and novel classes.

« Achieve SOTA on six benchmarks and generalize to more challenging GNCD setups.



Method
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Pre-trained ViT backbone with deep visual prompts f, projection head g, EMA teachers (fr, gr), [CLS]/prompt
embedding memory M, Mp.



PromptCAL — Discriminative Prompt Regularization (DPR)

(a) Stage 1: Warmup

To regularize visual prompts from overfitting, we also add
supervision on visual prompts at last ViT block. [ Backbone f ]

Embeddings

Prompt regularization loss are enforced in both stages,
e.g., in the 15t stage,

\ 4

Projector g

L1(x) = LS (2) + P (20)

/ [ Semi-sup. Contrastive Loss} ( Semi-sup. Contrastive Loss\

Discriminative Prompt Regularization loss:
apply same loss form on prompts




PromptCAL — Contrastive Affinity Learning (CAL)

(b) Stage 2: Contrastive Affinity Learning (c) SemiAG
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During contrastive affinity learning (2" stage), we design the following loss for
CLS token,

LSS = (1 - @) LG + o BLERS
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Loss on [CLS] Supervised Contrastive Affinity Self-supervised
token contrastive loss Loss (CAL Loss) contrastive loss

After discriminative prompt regularization, the total loss of the 2" stage is:

Ly = L5" + Ly



PromptCAL — Semi-supervised Affinity Generation (SemiAG)
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Row-normalized G, provides pseudo-labels
Ok (he) = argtopKy, ({h; - hc[h; € V}) diffused graph G for contrastive affinity learning.



Experiments

» Datasets
Dataset ‘ CIFAR-10 CIFAR-100 ImageNet-100 CUB-200 Aircraft StanfordCars
#Images in D 50k 50k 127.2k 6k 6.6k 8.1k
#Classes (|C|) 10 100 100 200 100 196
#Known Classes (|Crun|) 5 80 50 100 50 98

Table 4.1: The dataset profiles of six benchmarks for evaluation.

» Metrics: Clustering Accuracy

1
Acc = max — I(y; = ply;
e o Zl (i = p(5:))

* Implementation Details

Model Architecture: ViT-B/16, pre-trained DINO

Hyperparameters: a = 0.35,8 = 0.6,y = 0.35, Memory size 4096, K = |M|/(4|C|)
Negative samples for CAL: 1024

Optimizer: SGD, initial Ir=0.1, momentum=0.9, weight decay=5e-4

15t stage: training for 100 epochs for ImageNet-100 and 200 epochs for others.

2nd stage: training for 70 epochs for generic datasets and 100 epochs for fine-grained datasets.



Evaluation

CIFAR-10 CIFAR-100 ImageNet-100
Method All Known New | All Known New | All Known New
KMeans [2] 83.6 85.7 82.5 | 52.0 52.2 50.8 | 72.7 75.5 71.3
RankStats+ [19] 46.8 19.2 60.5 | 8.2 77.6 19.3 | 37.1 61.6 24.8
UNO+ [14] 68.6 98.3 53.8 | 69.5 80.6 472 | 70.3  95.0 57.9
GCD [50] 91.5 97.9 88.2 | 73.0 76.2 66.5 | T4.1 89.8 66.3
ORCAT [6] 96.9 95.1 97.8 | T4.2 82.1 67.2 | 79.2 93.2 72.1
PromptCAL-1" (Ours) || 97.1 97.7 96.7 | 76.0 80.8 66.6 | 75.4 94.2 66.0
PromptCAL-2"? (Ours) || 97.9 966 98.5|81.2 84.2 75.3 | 83.1 92,7 T78.3

Table 4.2: Evaluation on three generic datasets.

Tdenotes adapted methods. Both stages of PromptCAL are evaluated.

Accuracy scores are reported.

CUB-200 StanfordCars Alircraft

Method All Known New | All Known New | All Known New
KMeans [2] 34.3 38.9 321 | 128 10.6 13.8 | 12.9 12.9 12.8
RankStats+ [19] 33.3 51.6 24.2 | 28.3 61.8 12.1 | 279 55.8 12.8
UNO+ [14] 35.1 49.0 28.1 | 35.5 70.5 18.6 | 28.3 53.7 14.7

GCD [56] 51.3 56.6 48.7 | 39.0 57.6 29.9 | 45.0 41.1 46.9

ORCA' 6] 36.3 43.8 32.6 | 31.9 42.2 26.9 | 31.6 32.0 314
PromptCAL-1* (Ours) || 51.1 554 489 | 426 628 329 | 445 446 445
PromptCAL-2"" (Ours) || 62.9 64.4 62.1 |50.2 70.1 40.6 | 52.2 52.2 52.3

Table 4.3: Evaluation on three fine-grained datasets. Accuracy scores are reported.

tdenotes adapted methods. Both stages of PromptCAL are evaluated.

Consistently and significantly surpasses SOTA
2nd stage gains more improvements
More favorable gains on New

Remarkable advantages on FG datasets



Ablations

Dataset H Setup | All Known New
CUB-200 w/o prompt | 60.3 64.8 58.0
CUB-200 w/o DPR 59.3 63.3 57.4
CUB-200 KNN w/ S.P. | 60.1 70.1 55.1
CUB-200 R.S. 55.6 66.0 50.3

CUB-200 PromptCAL | 62.9 64.4 62.1

CIFAR-100 w/o prompt | 78.1 83.0 68.4
CIFAR-100 w/o DPR 79.0 83.4 70.3
CIFAR-100 || KNN w/ S.P. | 78.7 85.3 65.4
CIFAR-100 R.S. 75.9 87.1 53.4
CIFAR-100 PromptCAL | 81.2 84.2 75.3
ImageNet-100 || w/o prompt | 81.8 94.7 75.3
ImageNet-100 w/o DPR 80.7 94.8 73.6
ImageNet-100 || KNN w/ S.P. | 81.9 95.0 75.3
ImageNet-100 R.S. 78.1 95.2 69.4
ImageNet-100 | PromptCAL | 83.1 92.7 78.3

Table 4.8: Further ablation study on CUB-200 [57], CIFAR-100 [35], and
ImageNet-100 [36] datasets. We investigate four setups: the first is PromptCAL re-
moving all prompt related components; the second is PromptCAL without DPR, loss; the
third is replacing SemiAG with naive KNN incorporated with SemiPriori; the last one is
replacing our SemiAG with RankingStats [19] pseudo labeling.

No prompt lead to suboptimal performance

Prompt tuning without regularization degrades
performance

Nawe KNN cannot learn good affinities among
novel class instances since it is not robust to
noises



Ablations — Wilder Scenarios

I C50-L10 | C25-L50 | C10-L50
Method H All  Known New ‘ All  Known New ‘ All Known New
GCD [56] 60.2 68.9 55.8 | 56.8 67.6 55.0 | 48.3 65.1 47.3
ORCA (ResNet) [6] 39.4 55.1 31.2 | 37.0 64.1 31.7 | 30.1 64.3 27.1
ORCAT (ViT) [0] 60.3 66.0 55.3 | H&.2 79.9 57.5 | 51.7 78.0 50.2

PromptCAL-1* (Ours) || 62.7 4.7  56.6 | 60.2 70.7 08.5 | 48.7 68.4 476
PromptCAL-2" (Ours) | 68.9 77.5 64.7 |65.7 769 63.8|53.2 79.3 51.7

Table 4.6: Ablation study on few-annotation GNCD on CIFAR-100 [35] dataset.
Digits following 'C’ and 'L’ stand for percentages of known classes and labeling ratios.
Tdenotes adapted methods. Scores reported in accuracy.

CUB-200 CIFAR-100 ImageNet-100
Method All Known New Known* New* | All Known New Known* New® | All Known New Known* New"

GCD [56] 57.5 64.5 50.6 69.2 57.6 | 70.1 76.8 43.5 8.7 58.2 | 79.7 92.7 66.7 92.7 66.9
ORCA (DINO) [6] || 40.7 61.2 20.2 76.3 383 | T7.7 83.6 53.9 83.6 66.6 | 81.3 94.5 68.0 94.5 71.1
PromptCAL (our) | 62.4  68.1 56.8 70.1 60.1 | 81.6 85.3 66.9 86.2 71.3 | 84.8 94.4 75.2 94.4 75.3

Table 4.12: Evaluation in the inductive GCD setting[6] on three benchmarks.
The results are reported in accuracy scores on the test set. Here, we also adopt the task-
informed evaluation protocol in [14, 6], i.e., Known* and New* are evaluated by separate
clustering and Hungarian assignment.



Ablations — Role of DPR
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Figure 4.1: The t-SNE [54] visualization of ViT embeddings on CIFAR-10 test set
for GCD [56], naive VPT model [28], and PromptCAL-1%¢ stage and 2" stage, Here, [CLS],
[P], and [P]* denote embeddings from ViT class token, ensembled prompts supervised by
DPR loss, and unsupervised prompts, respectively. The embedding clustering shows that
DPR reinforces the semantic discriminativeness of [P], and for [P]* despite no explicit
supervision. (e) exhibits the class name each color denotes. All figures share the same axis
scale.



Qualitative Results — Nearest Neighbors Query
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Qualitative Results — Confusion Matrix
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Figure 4.3: Confusion matrix of PromptCAL on ImageNet-100 [36] test set. The
labels on the x-axis and y-axis denotes the class index of our generated split. The first 50
classes are Known, and the last 50 classes are New.



Conclusions

1. We propose a novel two-stage framework, PromptCAL, for the
generalized novel category discovery problem.

2. We propose two synergistic learning objectives, discriminative prompt
regularization and contrastive affinity learning.

3. We comprehensively validate the effectiveness of our method on multiple
benchmarks, achieving state-of-the-art performance.

4. We further showcase generalization ability of PromptCAL in challenging
few-annotation scenarios and inductive setup.
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