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Introduction

◼ Motivation
 The memorization strength of DNNs towards different instances increases 

as training progresses
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Introduction

◼ Motivation
 Exploiting information in noisy set by“divide and conquer”strategy
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Introduction

◼ Contributions

 The memorization strength of DNNs towards individual instances can be 
denoted by confidence, which increases along with training

 Dynamic instance-specific threshold is proposed for selecting reliable 
labels and correcting noisy labels following an easy-to-hard curriculum

 We propose a“divide and conquer”strategy. The dynamic threshold 
strategy is leveraged to group noisy data into three different subsets and 
different regularization strategies are utilized to handle individual subsets

6



7

Method

◼ Dynamic instance-specific threshold
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(a) The global threshold (b) The Class-wise threshold (c) The dynamic instance-

specific threshold

Momentum 
of confidence
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Method

◼ Divide and conquer
 Divide

• The entire noisy set is divided into three different subsets according to the 
intersection of two views’predictions and the noisy labels
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Method

◼ Divide and conquer
 Conquer

• Different regularization strategies are adopted to conquer individual subsets
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Experiments

◼ Single noisy label image classification
 Datasets

 Evaluation metric
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Datasets # Class Scale Noise ratio Noise sources

CIFAR10 10 60K 𝜌 ∈ {20%, 40%, 60%} Inst. 

CIFAR100 100 60K 𝜌 ∈ {20%, 40%, 60%} Inst. 

Tiny-ImageNet 200 120K 𝜌 ∈ {20%, 50%, 45%} Sym., asym.

Clothing1M 14 1,074K 38.5% Real-world 

WebVision 50 100K 20% Real-world 

Food101N 101 101K 18.4% Real-world 

Animals-10N 10 55K 8% Real-world 

𝑨𝒄𝒄 =
#𝑻𝒓𝒖𝒆

#𝑻𝒐𝒕𝒂𝒍
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Experiments

◼ Comparison with SOTA methods on CIFAR with Inst. noise
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Experiments

◼ Comparison with the SOTA methods on Tiny ImageNet with sym. 
and asym. noise.
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Experiments

◼ Comparison with the SOTA methods on Animals-10N, Food-101, 
WebVision and Clothing1M
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 Animals-10N  WebVision  Clothing1M

 Food-101
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Experiments

◼ The size ratio of different subsets on CIFAR (40% IDN)
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(a) CIFAR-10 (b) CIFAR-100
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Experiments

◼ The noise suppression on CIFAR (40% IDN)
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(a) Correction acc. of (b) Label noise rate in 
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Experiments

◼ Ablation Study
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 Ablation study on CIFAR under inst. noise 
20%, 40% and 60%

 Test acc. of the different views on CIFAR

 Test acc. of different selection methods on CIFAR

 Training and testing time profiling with PresNet-34 
backbone and RTX 3090 GPU on CIFAR-10 with 20% 
inst. noise in one epoch
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Conclusion

◼ Memorization strength of DNNs towards individual instances 
could be reflected by confidences, which become higher along 
with training

◼ DISC is able to set a reasonable threshold for each instance and 
delicately divide the noisy data into different subsets, which can 
effectively suppress the label noise during classification learning

◼ However, DISC may also induce confirmation bias, since high-
confidence instances may be the easy ones with noisy labels 
rather than the clean ones
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Thank you for listening : )

Our paper and code are available:

Paper Code

Feel free to contact 
Yifan Li via:

liyifan20g@ict.ac.cn
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Introduction

◼ Backgrounds
 Label noise widely exists in the test sets of different datasets

19

Northcutt, Curtis G., Anish Athalye, and Jonas Mueller. "Pervasive label errors in test sets destabilize machine learning benchmarks." arXiv preprint 

arXiv:2103.14749 (2021).

There also exists label noise in the validation set

The training set may be even noisier than the test set !
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Introduction

◼ Backgrounds
 Label noise will harm the generalization ability of model

• The model selected by validation set is sub-optimal

• DNNs tend to memorize the label noise in the training set
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