sensetime

Y 150 )il

V sensetime

Consistent-Teacher: Towards Reducing
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Background: Traditional Semi-Supervised Detector Pipeline

Weak Aug Teacher
Detector

t EMA

: update

Student
7 Detector

Almost the same with classitication b/

AR A



ConsistentTeacher: A SOTA Semi-Supervised Detector
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Motivation: Pseudo-label evolvement in traditional SSOD
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Motivation: Pseudo-label drifting in traditional SSOD
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Pseudo-label evolvement in traditional SSOD




Reasons of pseudo-label drifting
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Pseudo-label drifting in traditional SSOD Oy B
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Adaptive pseudo-label assignment
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Adaptive pseudo-label assignment
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Adaptive pseudo-label assignment

Assignment

IoU-based
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* Large improvement
over the baseline

e Twice as much gain as
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Pseudo-label drifting in traditional SSOD ) B
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Task inconsistency in SSOD
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3D Feature Alignment
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More aligned Cls-Reg tasks in SSOD
Method
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Score threshold inconsistency




Pseudo-label score distribution as GMM

Negative Positive

Score distribution as GMM
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Number of pseudo labels in semi-supervised object detection
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Performance of GMM

* Free from hyper-
parameter tuning
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State-of-the-art comparison on partial COCO

Method 1% COCO | 2% COCO | 5% COCO | 10% COCO
Labeled Only 9.05 12.70 18.47 23.86
CSD 10.51 13.93 18.63 22.46
STAC 13.97 18.25 24.38 28.64
Instant Teaching 18.05 22.45 26,79 30.40
Humble teacher 16.96 21 72 2770 351.61
Unbiased Teacher 2015 24.30 28 27 31.50
Soft Teacher 20.46 - 30.74 34.04
ACRST 26.07 28.69 3135 34.92
PseCo 2243 21 .17 3250 36.06
Labeled Only 10.22 13.80 19.40 24.10
Unbiased Teacher v2 2271 26.03 30.08 32.61
DSE. 2248 25.19 30.87 36.22
Dense Teacher 22.38 27.20 33.01 31.15
S40D 20.10 - 30.00 32.90
Mean-Teacher 20.40 26.00 30.40 35.50

I Consistent—-Teacher 25.30 30.40 36.10 40.00




State-of-the-art comparison on additional COCO

Method

CSD(3%)

STAC(6 %)

Unbiased Teacher(3 %)
ACRST(3x)

Soft Teacher(16x)
DSL(2x%)

PseCo(8 %)

Dense Teacher(8 x)

Consistent—-Teacher (8X)

APs50.95
40.20225,38 .82
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State-of-the-art comparison on partial VOC
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