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Unthinkable Question

Generalizable INRs via Instance Pattern Composers

Our simple modulation method can leverage the powerful modulation capacity of weight
modulation and the low computational cost of feature modulations.

The shared structures of representations across instances are the pattern composition rule of
the shared weights, while a data instance is characterized by one modulation weight.
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Unthinkable Question

How the modulation weight, Instance Pattern Composers,

can be predicted during training & inferences?

It's compatible with both
1) hypernetworks & 2) meta-learning
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Unthinkable Question

Implicit Neural Representations (INRs)

For an implicit representation of data instance, a parameterized neural network
(e.g. coordinate-based MLP) is trained to map a coordinate into its corresponding features.

That is, a data instance is represented as a continuous function.

coordinate-based MLP

Yi = fgb(vi)

one continuous function
(and a set of parameters)

one data instance
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Unthinkable Question

EachMLPis
separately trained to represent each data point.

It cannot learn shared structures , representations,
and knowledge across datainstances.



Unthinkable Question

Generalizable INRs via Instance Pattern Composers

- We categorize the weights of MLP into the following two types:

i) Instance Pattern Composer as instance-specific parameter

ii) Pattern Composition Rule as instance-agnostic parameter.
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Unthinkable Question

Generalizable INRs via Instance Pattern Composers

After the Fourier feature mapping, instance-agnostic low-level frequency patterns are extracted
for irregular and non-periodic frequency patterns.

low-level
frequency patterns
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Unthinkable Question

Generalizable INRs via Instance Pattern Composers

- We define instance pattern composers to characterize the INR of a data instance.

- Instance pattern composers are the only instance-specific part of our coordinate-based MLP.

modulated weight by instance pattern composer V(n)
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Unthinkable Question

Generalizable INRs via Instance Pattern Composers

We categorize the weights of MLP into the following two types:
|) Instance Pattern Composer as instance-specific parameter
ii) Pattern Composition Rule as instance-agnostic parameter.

instance content patterns
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Unthinkable Question

Generalizable INRs via Instance Pattern Composers

We categorize the weights of MLP into the following two types:
1) Instance Pattern Composer as instance-specific parameter
ii) Pattern Composition Rule as instance-agnostic parameter.

instance-agnostic
pattern composition rule
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* after the second layer,
whole weights are shared across instances.
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Unthinkable Question

Generalizable INRs via Instance Pattern Composers

Our simple modulation method can leverage the powerful modulation capacity of weight
modulation and the low computational cost of feature modulations.

The shared structures of representations across instances are the pattern composition rule of
the shared weights, while a data instance is characterized by one modulation weight.
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Unthinkable Question

How the modulation weight, Instance Pattern Composers,

can be predicted during training & inferences?

It's compatible with both
1) hypernetworks & 2) meta-learning
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Unthinkable Question

Transformer-based Hypernetwork

Transformer-based hypernetwork predicts the row vectors of instance pattern composers.

Learnable weight tokens are used as the inputs of the transformer to predict modulation weights.

Instance Pattern Composer Vv @ @

Audio Image View
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Meta-Learning for Instance Pattern Composers

« CAVIA can be modified to learn the initialization of instance pattern composers for rapid adaptation
In few gradient steps, while the remaining weights are fixed.

Algorithm 1 Optimization-based meta-learning [32] for
generalizable INRs via instance pattern composer.

Require: Randomly initialized 0, ¢, a dataset X', the num-
ber of inner steps Ninner, and learning rates ¢, €’.

1: while not done do

2: forn=1,--- , Ndo

3: Initialize instance-specific parameter ¢(™) < ¢

4: end for

/* inner-loop updates for 0™ x/
5: for all step € {1,--- , Ninner } and x(") € X do
o' = ¢t — €| g |2V gy L1 (8, 913 x )
7: end for update the initialization

/* outer—-loop updates for 6, ¢ */ / of instance pattern composers
8: Update ¢ < ¢ — € Vg L(0, {op™}N_ : X)

0: Update 0 < 0 — ¢ VoL(0, {p™MIN_ . X) —— update instance-agnostic

10: end while pattern composition rule
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Unthinkable Question

Audio Reconstruction

Five layer MLP is trained to reconstruct 1D audio signal with 1 second and 3 seconds, respectively.

Our generalizable INRs via Instance Pattern Composers outperforms previous TransINR, validating
the effectiveness of our simple weight modulation methods.

Table 1. PSNRs of the reconstruction of the LibriSpeech test-clean
dataset whose sample 1s trimmed into one and three seconds.

LibriSpeech (1s)  LibriSpeech (3s)
TransINR 39.22 33.17
Ours 40.11 35.38
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Unthinkable Question

178x178 Image Reconstruction

Transformer predicts 256 number of weight modulation vectors as instance pattern composers.

The ImageNette dataset contains 10 classes of images in ImageNet.

Table 2. PSNRs of reconstructed images forl78 x 178 resolution
of 1images 1n the CelebA, FFHQ, and ImageNette test dataset.

TransINR

original

CelebA FFHQ ImageNette
Learned Init [27/] 30.37 - 27.07
TransINR 33.33 33.66 29.77
Ours 35.93 37.18 38.46

CelebA

ImageNette
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Unthinkable Question

TransINR
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Novel View Synthesis

For novel view synthesis, we use ShapeNet Chairs, Cars, and Lamps.
Six layer MLPs with 256 hidden dimensions are used to estimate neural field of 3D objects.
Transformer takes few views of an object to predict Instance Pattern Composers for neural field.

We use simple volumetric rendering, since we focus on validating the efficacy of our modulation.

ed.
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Table 4. Performace comparison of generalizable INRs on novel .
view synthesis from a single support view. .
25 1
Chairs Cars  Lamps + 247
Matched Init [27] | 1630 2239  20.79 5 23 ,
Shuffled Init [27] | 10.76  11.30  13.88 Z ,,,,,,, -4 Toms (i
Learned Init [27/] 18.85 2280 22.35 0. TansiNR (Cars
TransINR 905 24.18 2289 19 - —A- TransINR (Lamps)
Ours 19.30 2418 2341 . . e
1lview 2views 3views 4views 5 views
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Novel View Synthesis (Cont’d)

Query view

Support views (GT)

Synthesized view
w/o TTO w/ TTO

. Query view Synthesized view
SUppOrt view (GT) w/o TTO  w/TTO
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Effects of the Weight Modulation Locations

When the location of weigh matrix moves into the output layer,

the performance of INRs deteriorates due to the limited power of pattern composition rule.

Modulating early layer is the key of high performance for generalizable INRs.

Table 7. PSNRs of our generalizable INRs on 1mage reconstruc-
tion according to the location of modulated weights in MLP.

the modulated layer of MLP
1 2 3 4 S
ImageNette | 31.00 3593 3299 31.10 20.26
FFHQ 36.04 36.20 342 31.09 2292

S
too simple frequency features limited pattern composition rules
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Activation Visualization of INRs

Our generalizable INRs learns more interpretable and common representations across instances.

Kakao Brain © All rights Reserved.

low-level instance-specific pattern composition
frequency patterns content pattern
Ground Truth h(™) (n) (n) Reconstruction

FFNet

Ours

Kakao Brain
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Conclusion

We have proposed the framework for generalizable INRs via instance pattern composers.

nstance pattern composers modulate one weight matrix of the early MLP layer to generalize the
earned INRs for unseen data instances.

Thanks to the simplicity, our framework is compatible with both optimization-based meta-learning
and hypernetworks to significantly improve the performance of generalizable INRs.

Experimental results demonstrate the broad impacts of the proposed method on various domains and
tasks, since our generalizable INRs effectively learn underlying representations across instances.
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Thank You :)
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