
∫ NNs
INTEGRAL NEURAL NETWORKS

K. Solodskikh , A. Kurbanov , R. Aydarkhanov ,

I. Zhelavskaya , Y. Parfenov , D. Song , S.Lefkimmiatis
Huawei Noah Ark Lab , Thestage.ai , *-equally contributed

2* 2* 2

1 1 1 1

1 2

C V P R 2 0 2 3 , Aw a r d C a n d i d a t e

codepaper

H O M E H O W I T WO R K S∫ NNs

What is Integral
Neural Networks?

• Integral Neural Networks (INNs) is the new class of neural

networks which uses integral operators instead of conventinal

layers

• INNs utilizes smooth parameters representation instead of

tensor representation

• Such a representation allows fast resampling of pre-trained INN

delivering structured pruning without fine-tuning

• The main idea could be touched through simple Riemann integral:

, ,

are the weights of the integration quadruature,

H O M E H O W I T WO R K S∫ NNs

How integral
layers works?

• Integral layers are integral operators of specific type on linear

space of integrable functions.

• Vanilla discrete layers coincide with numerical integration

quadratures of corresponding integral layers.

Convolution operator

Fully-connected operator

H O M E H O W I T WO R K S∫ NNs

Smooth
representation
of weights

• Because of efficiency we propose to parametrize weight function

of integral layer by a sum of interpolation kernels of finite

support

• Specifically, we utilizing cubic convolutional kernels. Such a

parametrization supported by main deep learning framewroks like

TensorFlow, PyTorch for signals and images resizing:

• On forward pass weights goes through the discretization process

and adjusted by quadrature weigths:

H O M E H O W I T WO R K S∫ NNs

Backpropagation
through
integration

Neural Integral Lemma Given that an integral kernel is smooth

and has continuous partial derivatives on the unit cube ,

any composite quadrature can be represented as a forward pass of the

corresponding discrete operator. The backward pass of the discrete

operator corresponds to the evaluation of the integral operator with the

kernel using the same quadrature as in the forward pass.

For backpropagation through integration we use the chain-rule to

evaluate the gradients of the trainable parameters as in discrete

networks. The validity of the described procedure is guaranteed by

the combination of Fubini's theorem and Leibniz rule and can be

formulated as the following simple lemma.

H O M E H O W I T WO R K S∫ NNs

Conversion of
DNN to INN

• Nowadays, there exists a large variety of pre-trained discrete

networks

• It would be beneficial to have in place a process of converting

such networks to integral ones

• To this end, we propose an algorithm that permutes the filters and

channels of the weight tensors in order to obtain a smooth

structure in discrete networks

• To find a permutation, we build equivalent problem to the well-

known Traveling Salesman Problem

• Resulted network has the same quality as initial discrete NN

H O M E H O W I T WO R K S∫ NNs

Training of INNs • Any available gradient descent-based method can be used for

training the proposed integral neural networks

• We use Neural Integral Lemma to construct the training algorithm

• We train our networks with random number of output channels /

rows from a predefined range

• Training INNs using such an approach allows for a better

generalization of the integral computation

• Our training algorithm minimizes the differences between different

cube partitions for each layer using the following objective:

H O M E H O W I T WO R K S∫ NNs

Trainable
Integration Grid

Non-uniform sampling can improve numerical integration without

increasing the partition size. This relaxation of the fixed sampling

points introduces new degrees of freedom and leads to a trainable

partition. By training the separable partitions we can obtain an

arbitrary rectangular partition in a smooth and efficient way. Such a

technique opens up the opportunity for a new structured pruning

approach.

H O M E H O W I T WO R K S∫ NNs

INNs Framework • TorchIntegral is the Python framework for numerical evaluation of

arbitrary integrals

• Framework has general enough interface and supports arbitrary

integration quadratures

• Support of integral layers and weights parametrization customization

• Automatic conversion of discrete DNNs to INNs

H O M E H O W I T WO R K S∫ NNs

Experiments /
Overview

• Comparison of discrete NNs with INNs

• Comparison of INNs trained from scratch and INNs initialized from

pre-trained discrete network

• Comparison of INNs resampling and structured pruning without

fine-tuning

H O M E H O W I T WO R K S∫ NNs

Experiments /
INNs vs DNNs

• Comparison of trained vanilla DNNs, INNs trained from scratch

and INN initialized by our conversion algorithm (INN-init)

• INN with our initialization acheives the same preformance as

corresponding vanilla DNN

H O M E H O W I T WO R K S∫ NNs

Experiments /
Comparison with
channel selection
methods

Resampling of pre-trained INNs significantly outperforms channel

selection methods for structured pruning without fine-tuning.

H O M E H O W I T WO R K S∫ NNs

Experiments /
EDSR examples
on DIV2K

H O M E H O W I T WO R K S∫ NNs

Future steps • INNs open up new possibilities for investigating the capacity of

neural networks. The Nyquist theorem can be used to select the

number of sampling points.

• Explore other parameter permutation strategies that can improve

the initialization from discrete networks and the pruning accuracy.

• Adaptive integral quadratures. In this work, we have investigated

only uniform partitions for training INNs. Investigating data-free

non-uniform partition estimation could also have strong impact on

INNs.

• Training INN from scratch requires improvement for classification

networks. Current accuracy drop probably caused by absence of

batch-normalization layers. Smooth analogue of normalization is

required.

• Convolutions in INNs could generate any number of channels for

the output image. We propose to investigate such architectures in

an optical flow estimation to provide a flexible sampling of

intermediate frames.

H O M E H O W I T WO R K S∫ NNs

