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What is Integral
Neural Networks?

| NNs

o Integral Neural Networks (INNs) is the new class of neural
networks which uses integral operators instead of conventinal
layers

* INNs utilizes smooth parameters representation instead of
tensor representation

e Such a representation allows fast resampling of pre-trained INN

delivering structured pruning without fine-tuning
» The main idea could be touched through simple Riemann integral:
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How integral
layers works?

| NNs

o Integral layers are integral operators of specific type on linear
space of integrable functions.
« Vanilla discrete layers coincide with numerical integration

quadratures of corresponding integral layers.
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» Because of efficiency we propose to parametrize weight function
of integral layer by a sum of interpolation kernels of finite
support

o Specifically, we utilizing cubic convolutional kernels. Such a
parametrization supported by main deep learning framewroks like
TensorFlow, PyTorch for signals and images resizing:

Fy(A, xou, xin) . Z,liju(xommom - i)u(xinmin —j) ‘

Smooth
representation
of weights
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» On forward pass weights goes through the discretization process
and adjusted by quadrature weigths:
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For backpropagation through integration we use the chain-rule to

(4
BaCKp ropagatlon evaluate the gradients of the trainable parameters as in discrete

networks. The validity of the described procedure is guaranteed by

th roug h the combination of Fubini's theorem and Leibniz rule and can be
® ° formulated as the following simple lemma.
integration

Neural Integral Lemma Given that an integral kernel F(A, x) is smooth

dF (4, x)
o,

and has continuous partial derivatives on the unit cube [0.11",

any composite quadrature can be represented as a forward pass of the
corresponding discrete operator. The backward pass of the discrete

operator corresponds to the evaluation of the integral operator with the
IF(1,x)
/

kerne using the same quadrature as in the forward pass.
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o Nowadays, there exists a large variety of pre-trained discrete

(]
Conversion of -
« It would be beneficial to have in place a process of converting
D N N to I N N such networks to integral ones

» To this end, we propose an algorithm that permutes the filters and
channels of the weight tensors in order to obtain a smooth
structure in discrete networks

» To find a permutation, we build equivalent problem to the well-
known Traveling Salesman Problem

» Resulted network has the same quality as initial discrete NN

Matrix of the original Permuted discrete Smooth weights
¢’ discrete weights e weights E representation
Permutation Smooth
algorithm interpolation
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e o » Any available gradient descent-based method can be used for
Tra I n I n g Of IN Ns training the proposed integral neural networks
» We use Neural Integral Lemma to construct the training algorithm
o We train our networks with random number of output channels /
rows from a predefined range
» Training INNs using such an approach allows for a better
generalization of the integral computation
« Our training algorithm minimizes the differences between different
cube partitions for each layer using the following objective:

Net(X, P,) — Net(X,P,)| < |Net(X,P,)— Y| + |Net(X,P,) - Y
1 2 1 2
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° Non-uniform sampling can improve numerical integration without
Tra I n a ble increasing the partition size. This relaxation of the fixed sampling
° ° points introduces new degrees of freedom and leads to a trainable
Integ ratl0n G rld partition. By training the separable partitions we can obtain an
arbitrary rectangular partition in a smooth and efficient way. Such a
technique opens up the opportunity for a new structured pruning

approach.



import torch_integral
import torchvision.models as models

model = models.resnetl8(pretrained=True)

# convert discrete model to INN

model = torch_integral.IntegralWrapper(
init_from_discrete=True,
quadrature='trapezoidal’,
parametrization="cubic_conv',

) .wrap_model(model)
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« Comparison of discre

Experiments I o Comparison of INNstain d

pre-trained discrete network N

°
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» Comparison of trained vanilla DNNS, I}

Experl ments I and INN initialized by our conversion algorithm (Il
o INN with our initialization acheives the same prefor
IN Ns vs DN Ns corresponding vanilla DNN

Dataset Model Discrete INN  INN-init
NIN 92.3 91.8 92.5
Cifar10 VGG-11 911 89.4 91.6
Resnet-18 95.3 931 95.3
VGG-19 72.3 68.5 72.4
ImageNet Renset-18 69.8 66.5 70.0
Resnet-50 741 711 741

Dataset Model Discrete INN INN-init
SRCNN 3x 32.9 32.6 32.9

Sl EDSR 4x <12 ) 2.2 D4
SRCNN 3x 294 29.0 294
Setl4
EDSR 4x 28.7 200 SV
RIOO SRCNN 3x 26.8 261 26.8

EDSR 4x 27.6 272 276
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Experiments /
Comparison with
channel selection
methods
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Experiments /
EDSR examples
on DIV2K
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Future steps

INNs

« INNs open up new possibilities for investigatin
neural networks. The Nyquist theorem can be used
number of sampling points. §

» Explore other parameter permutation strategies that can imp ST
the initialization from discrete networks and the pruning accuracy.

o Adaptive integral quadratures. In this work, we have investigated
only uniform partitions for training INNs. Investigating data-free
non-uniform partition estimation could also have strong impact on
INNs.

» Training INN from scratch requires improvement for classification
networks. Current accuracy drop probably caused by absence of
batch-normalization layers. Smooth analogue of normalization is
required.

o Convolutions in INNs could generate any number of channels for
the output image. We propose to investigate such architectures in
an optical flow estimation to provide a flexible sampling of
intermediate frames.




