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Abstract

* We generate a series of compatible sub-models with different capacities through
one training process.

« We mitigate the gradient conflict when learning compatibilities from the
perspective of the magnitude and direction.
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Current Work

* Dynamic Neural Networks

« Hand-crafted: dynamic depth, dynamic width, dynamic routing, dynamic parameters, etc.
* Neural Architecture Search (NAS)

o Difference between Current Work with Our Work

 Current works output with definite semantic information (e.g., class id, detection box) which
are naturally interoperable.

 Our works focuses on feature compatibility which is required by the Visual search system.
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Current Work

« Backward Compatible Learning

 Given a fixed old model, align the learnable models with the fixed old one in metric space.
 Focus on the optimization difficulties caused by the old model

e Difference between Current Work with Our Work

 Current works focus on one-to-one compatible learning paradigms.

« Our work studies a new compatible learning paradigm that aims to learn many-to-many
compatibility among multiple learnable models.
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Our Method

 Framework

* Convert the traditional convolutional neural network into a switchable neural network.
» Calculate compatible loss L., L, ... L._,0n different sub-models.

« Optimize the sub-models by aggregating gradients.
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Our Method

« Aggregation Method based on the Gradients Projection

* Problem: Aggregating the gradients by summation may cause mutual interference, which
means the improvements of sub-models are overestimated or underestimated.

« Solution: Gradients with conflicting directions are projected to the orthogonal direction.
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Our Method

« Compatible Loss based on the Uncertainty Estimation

« Problem: The imbalance of gradient magnitude between sub-models may also cause mutual
Interference.

« Solution: Adjust the priorities of sub-models dynamically through uncertainty estimation.
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Performance

« Compatible Loss based on the Uncertainty Estimation

z{%,fﬁg) % Lo | o | 6n | 0 || 00 | o1 | 0a | 6
Unified Model Ours
b 55.25 - - - 58.19 | 6288 | 6348 | 6943
61 - | 6748 ; ; 6124 | 7074 | 7137 | 7637
b2 ; - | nas ; 62.43 | 7125 | 7206 | 77.26
i i ] 8091 || 68.03 | 74.76 | 7567 | 81.43
BCT-S Asymmetric-S
b 5440 | 58.10 | 6022 | 6129 || 4879 | 51.96 | 54.00 | 5631
B 5571 | 6638 | 6829 | 6971 || 5224 | 6245 | 6498 | 6723
c,f)é 56.50 | 6830 | 68.42 | 7199 || 5444 | 6474 | 6797 | 7128
b 61.79 | 69.73 | 71.93 | 7361 || 5654 | 67.30 | 71.91 | 78.38
BCT Asymmetric
b1 5555 | 56.64 | 59.40 | 6035 || 55.83 | 50.85 | 53.71 | 55.39
b1 5583 | 6574 | 67.10 | 68.54 || 52.66 | 67.04 | 62.08 | 66.59
b o 55.66 | 68.02 | 6749 | 7093 || 54.48 | 6233 | 6633 | 70.14
b 58.69 | 69.48 | 70.04 ; 56.08 | 66.66 | 69.71 ;

Baseline performance comparison on Market1501 (mAP). “Unified Model” are models without
any compatible regularization
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Conclusion

* We propose a Switchable Representation Learning Framework with Self
Compatibility for multi-platform model collaboration.

* The method enables us to obtain models with various capacities to fit different
computing and storage resource constraints on diverse platforms.

* |t learns many-to-many compatibility by uncertainty estimation and gradient
projection.
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Conclusion

Thank you for listening!
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