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Robustness to distribution shift
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Figure source: Radford, Alec, et al. "Learning transferable visual models from natural language supervision." ICML, 2021.



Fine-tuning can reduce the robustness

» Trade-off between ID and OOD performance

Schematic: fine-tuning CLIP on the reference distribution leads to
higher accuracy on the reference distribution but less robustness
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Figure source: Wortsman, Mitchell, et al. "Robust fine-tuning of zero-shot models.”" CVPR, 2022.
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Fine-tuning can reduce the robustness:
a causal perspective

* Fine-tuned models tend to rely on both semantic & non-semantic representations (.., hy)
for the prediction of image semantics
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Fine-tuning can reduce the robustness:
a causal perspective

* Fine-tuned models tend to rely on both semantic & non-semantic representations (.., hy)
for the prediction of image semantics s

« The correlation between h; and s is unstable under distribution shift
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Masked images as counterfactual samples

« Masking based on Class Activation Map (CAM):

» Context-mask: h,
* Object-mask: /.

context-mask object-mask




Robust fine-tuning with counterfactual samples

» Distillation with the pre-trained model based on masked images x ¢

L=_Lee(g(f(x),y)+ BLusk (]E(xcf)'f(xcf))

x: factual sample; x.r: counterfactual sample; y: label
f, f : backbone of fine-tuning/pre-trained model; g: classifier




Robust fine-tuning with counterfactual samples

» Distillation with the pre-trained model based on masked images x ¢

L=_Lee(g(f(x),y)+ BLusk (]E(xcf)'f(xcf))

Context-mask Object-mask

Fine-tuned model Pre-trained model Fine-tuned model Pre-trained model



Robust fine-tuning with counterfactual samples

* Refilling

* To enlarge the disagreement between fine-tuning and pre-trained model on x.¢
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Robust fine-tuning with counterfactual samples

 Refilling

* To enlarge the disagreement between fine-tuning and pre-trained model on x.¢
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Robust fine-tuning with counterfactual samples

* Refilling

* To enlarge the disagreement between fine-tuning and pre-trained model on x.¢

Factual image
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Masked image Refilled image Patches to fill Images from the batch
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Validation of masking and refilling strategies

B no masking * context-mask + single-fill
X random-mask + no-fill *  object-mask + single-fill
X context-mask + no-fill ¥ random-mask + multi-fill
X object-mask + no-fill ¥ context-mask + multi-fill
* random-mask + single-fill ¥ object-mask + multi-fill
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ID accuracy

Hyper-parameters:

Random-mask:

« Masking rate in {0.25, 0.5, 0.75}
Context/Object-mask:

« CAM score threshold in {0.3, 0.4, 0.5, 0.6}

Conclusions:

1. Masking > no masking

2. Refilling > no refilling

3. Object-mask > random/context mask




Comparison with existing methods

In-distribution (ID)

Model Method IN IN-V2 IN-R IN-Sketch ObjectNet IN-A OOD avg.
Zero-shot [37] 63.4 55.9 69.3 42.3 44.5 31.4 48.7
Vanilla fine-tuning 75.9 64.7 57.0 39.8 39.5 20.0 44.2
CLIP WiISE-FTT [43] 76.6 66.6 70.2 47.1 46.3 31.9 52.4
ViT-B/32 Uniform soup* [42] 80.0 68.6 66.6 47.7 46.1 29.2 51.6
Ours (multi-fill) 77.9 67.7 68.1 46.6 47.5 33.0 52.6
Ours (single-fill) 77.5 67.1 69.7 46.9 48.0 33.8 53.1
Zero-shot [37] 68.3 61.9 77.6 48.3 54.0 50.1 58.4
Vanilla fine-tuning 80.7 70.4 64.0 45.1 49.1 35.2 52.8

CLIP LP-FT [23] 81.7 71.6 72.9 48.4 / 49.1 /

ViT-B/16 WISE-FT [43] 81.7 72.8 78.7 53.9 57.3 52.2 63.0
Ours (multi-fill) 82.5 73.4 76.4 52.7 56.8 52.0 62.3
Ours (single-fill) 82.4 73.4 78.1 53.4 57.9 53.5 63.3

The proposed method is particularly effective when objects are shown in unusual contexts
(ObjectNet, ImageNet-A)



Discussion: WISE-FT [1]
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Accuracy on the reference distrihution (e.g., ImageNet)
(Image source: [1])

[1] Wortsman, Mitchell, et al. "Robust fine-tuning of zero-shot models." CVPR, 2022.



Discussion: WISE-FT [1] . .-
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(Image source: [1]) ID accuracy

* Weight-space ensemble of the zero-shot model & our model is less meaningful
* Adding an distillation loss with WISE-FT teacher slightly improves our model

[1] Wortsman, Mitchell, et al. "Robust fine-tuning of zero-shot models." CVPR, 2022.



Conclusion

 The spurious correlation between semantic and non-semantic factors in downstream
data may account for the robustness degradation in fine-tuning.

 Masked images can be effective counterfactual samples for robust fine-tuning,
breaking the spurious correlation.

 Weight-space constraints may be sufficient but not necessary for maintaining the
robustness of the pre-trained model.
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