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w3 Input points  kernel In contrast to other dynamic
aggregation methods, our
(a) Attention (b) Templated-based method approach introduces a novel

representation that guides the
process of feature aggregation.

(¢) Dynamic Conv (d) Vector

The primary focus of our work lies in enhancing the local
features of the standard MLP.
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Naturally, it is reasonable
[LUf[- 0 - 0] to imagine that each
feature component is

000 transformed in a high-
dimensional space.
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Our motivation stems from the weighted summation mechanism employed
in MILPs, which is commonly used in methods for weight assignment. We
consider the input feature vector component as a high-dimensional vector
containing only a single non-zero value.
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1-dimensional scaling
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2-dimensional scaling

It can be observed that the 1D vector transformation solely
involves scale transformation, whereas the 2D vector
transformation introduces an additional rotation operation.
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Given an unordered point set {x1, x3, ..., T, } With z; € R4, one can define a set function f: X =R
that maps a set of points to a vector:

represents the same setas N
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These observations highlight the requirements that must be met for effective
point cloud feature extraction. Consequently, we adopt a similar component to
PointNet, as it naturally fulfills these requirements.

Ql CR, SU H, MO K, et al. Pointnet: Deep learning on point sets for 3d classification and
segmentation. IEEE Conference on Computer Vision and Pattern Recognition, 2017:77 - 85.
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It is intuitive to perceive each channel value in an n-dimensional feature
vector as a coordinate value along a specific axis, akin to a basis vector
pointing in the direction of that axis.
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2-dimensional scaling

By interpreting the weighted summation from the vector perspective mentioned
earlier, it is reasonable to deduce that higher-dimensional vector transformations
can lead to more intricate and sophisticated representations.

Higher-dimensional vectors naturally accommodate a wider range of transformations,
and provide a more effective means of representing intricate neighbor relationships.
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The challenge of reconciling the
relationships between neighboring
features using scalar weights is
transformed into a problem of
vector summation. This approach
enables the incorporation of
homogeneous promotion, reverse
inhibition, and vector orientation,
facilitating a more expressive
representation of their relationships.
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V4
The vector transformation
consists of a scaling
o transformation and a
Y rotation transformation.
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The transformation of 3D rotation involves rotating around a specific
axis, necessitating the determination of both the rotation axis and the
rotation angle. In accordance with Euler's theorem, this rotation can be
decomposed into three successive rotations around orthogonal axes.
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Since we assume that the
feature components lie on

— the coordinate axes, a

a5 rotation parameter can be
' omitted.
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?7} = Rot. Rot.r

[ cos(a) —sin(a) 0 1 0 0 i 0
= | sin(a) cos(a) l}] ['D sin(B) —cos(B) [zm:|

0 0 1 0 cos(B) sin(8) o
[ cos(a) —sin(a)sin(3) sin{a)cos(3) ] r i| (3)

= | sin{a) cos(a)sin(8) —cos{a)cos(3)

1] cos(3) sin( )

[ —zz-sin(a)sin(3)
— zx-cos(a)sin(F) .
zxz-cos(F)

zxj; = Linear(fp;)
[a;, 3] = Relu(BN (Linear([fp;]))),

'E

(6)

Since the vector transformation alone is completely linear, we choose to add
relu to increase the nonlinear factor when predicting the rotation angle.
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SetAbstraction
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Feat. Propagation
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Figure 5. Overall Architecture. We reuse the SA module and Feature Propagation module of PointNet++ and propose the VPSA module
to improve the feature extraction of sampled point clouds.

* PointVector-S: C=32, S=0, V=[1,1.1,1] We denote C as the channel of embedding
MLP in the beginning, S as the numbers of the

SA module, V as the numbers of the VPSA
* PointVector-XL: C=64, S=[1,1,1,1], V=[3.6,3.3] module.

« PointVector-L: C=32, S=[1,1,1,1], V=[2.4.2,2]
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Method 0A  mAce mlOU | Params FLOPs  Throughput
% % % M G (ins.fsec.)
PointNet [25] 785 662 47.6 36 355 162
PointCNN [17] 8.1  Ti6 65.4 0.6 - -
DGCNN [9] 84.1 - 56.1 1.3 - 8
DeepGCN [14] 859 - 60.0 36 - 3
KPConv [20] - 9.1 T0.6 15.0 - 30
RandlLA-Met [12] 880 82O T70.0 1.3 5.8 159
Point Transformer [53] | 902  81.9 T35 T8 s.6 34
CBL [*4] 896 794 731 18.6 - -
RepSurf [ 20] 009  BLA 743 0.976 - -
PointNet++ [20] 810 671 54.5 1.0 1.2 186
PointMNe Xt-L [2%] 298 822 739 7.1 152 115
PointNe Xt-XL [25] 903 B30 749 41.6 B4.8 46
PointVector-L 914 855 7.4 42 10.7 98
PointVector-XL{Ours) | 91.9  B86.1 8.4 24.1 58.5 40

Table 1. Semantic segmentation on S3DIS with 6-fold cross-
validation. Methods are in chronological order. The highest and
second scores are marked in bold.

The utilization of vector-guided feature aggregation results in a substantial performance
enhancement, accompanied by a notable reduction in both parameter count and
computational requirements. However, due to optimization challenges, it exhibits a slight
lag in terms of speed.
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Method (= = = 3 = = = g = = = S = £ z =

] 9% 9%

PointNet [25] - 490 411 | 888 973 698 0.1 39 463 108 590 526 59 403 264 332
PointCNN [ 17] 859 639 573|923 982 794 00 176 228 621 T44 BOe 317 667 621 567

DGCNN [2Y] 836 - 479 - - - - - - - - - - - - -

DeepGCN [ 14] - - 525 - - - - - - - - - - - - -
KPConv [ 5] - 728 671 [ 928 973 824 00 239 580 690 815 9.0 754 753 667 589

PVCNN [17] g87.1 - 50.0 - - - - - - - - - - - - -
PAConv [11] - 73.0 o666 | 946 9856 824 00 264 580 o600 897 804 743 698 T35 577

ASSANet-L [17] - - 66.8 - - - - - - - - - - - - -
Point Transformer [52] | 90.8 765 704 | 940 0985 863 0.0 380 s34 743 891 824 743 802 7TeDd 593

PatchFormer [51] - - 68.1 - - - - - - - - - - - - -
CBL [*4] 906 752 694 (930 054 B42 00 370 577 M9 91,7 BB TR 756 691 629

RepSurf-U [ 0] 90.2 Te.0 689 - - - - - - - - - - - - -
StratifiedFormer® [ 14] 9.5 T81 720 | 962 987 856 00 461 600 Te® 926 B45 TTHE 752 TE1  6d0

PointMNet++ [26] 83.0 - 535 - - - - - - - - - - - - -
PointNeXt-L [ 74] 90.1 761 695 | 940 985 835 00 303 573 742 821 912 745 755 767 589
PointNeXt-XL [ %] 907 775 708 | 942 985 844 00 377 593 740 831 916 774 712 TER  6l6
PointVector-L{Ours) 908 773 712 | 948 982 841 00 317 600 777 837 919 SH18 TRY9 799 633
PointVector-XLi{Ours) | 9.0 781 723 | 951 986 3851 00 414 w08 767 844 921 820 772 851 6ld4d

Table 2. Semantic segmentation on S3DIS Area5. * denotes StratifiedFormer use 80k points as input points. The highest and second
scores are marked in bold.

Although our setup differs significantly from StratifiedFormer, we still maintain a

slight advantage over it.
Validation results for other benchmark datasets and ablation experiments
are detailed in the paper.
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1. We propose a new perspective on the weighted summation
operation.

2. Indeed, we propose the adoption of intermediate vectors to
represent the aggregation of neighboring features, guided by
the direction indicated by the vector.

3. For the vector transformation operation, we propose a
construction method for the rotation matrix utilizing independent
rotation angles, in accordance with Euler's theorem.
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The speed of our approach is constrained by the grouped convolution implementation.

we have not delved into deconstructing the representation of rotation in four-
dimensional space, which becomes more intricate, particularly within the plane.

Additionally, summing aftercomponent alignment aligns with our assumptions better
than scalar projection. As shown below, each channel should be alighed and then
summed directly.
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