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We introduce the first data-driven feature tracker for event cameras

Real Time



Our method predicts stable feature tracks in high-speed motion in
which standard frames suffer from motion blur.

Slowed Down



Existing feature trackers for event cameras rely on classical model
assumptions
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Existing feature trackers for event cameras rely on classical model
assumptions

e Require extensive manual hand-tuning to adapt to different event
cameras

* Difficulties to generalize to different scenarios due to unmodeled
effects
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We propose the first data-driven feature
tracker for event cameras




Our method predicts the displacement Afj of a feature by localizing a template

patch Py from a grayscale image I in subsequent event patches P;.
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The feature network encodes both patches using a correlation and
recurrent layers into a single feature vector with spatial dimension of 1x1.
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Fach feature track is independently processed by the feature network.
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To share information between features in the same image, we
introduce a novel frame attention module.
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The frame attention module uses a self attention layer to share the information
across the feature tracks and outputs the feature displacement Af;.
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We train our network on synthetic data by directly computing the L1-
Distance between the predicted Af; and ground truth displacement Af;.
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To close the gap between synthetic and real data, we introduce a fine-tuning
strategy, which triangulates and reprojects a 3D point using camera poses.
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By directly transferring zero-shot from synthetic to real data, our tracker
outperforms existing approaches in relative feature age by up to 120%.

EDS EC
Method Feature Age (FA) T Expected FA 1 Feature Age (FA) T Expected FA T
ICP [24] 0.060 0.040 0.256 0.245
EM-ICP [46] 0.161 0.120 0.337 0.334
HASTE [4] 0.096 0.063 0.442 0.427
EKLT [ 7] 0.325 0.205 0.811 0.775

| Ours (zero-shot) 0.549 0.451 0.795 0.787 |




This performance gap is further increased to 130% by adapting our
tracker to real data with a novel self-supervision strategy.

EDS EC
Method Feature Age (FA) T Expected FA 1 Feature Age (FA) T Expected FA T
ICP [24] 0.060 0.040 0.256 0.245
EM-ICP [46] 0.161 0.120 0.337 0.334
HASTE [4] 0.096 0.063 0.442 0.427
EKLT [ 7] 0.325 0.205 0.811 0.775
Ours (zero-shot) 0.549 0.451 0.795 0.787

| Ours (fine-tuned) 0.576 0.472 0.825 0.818
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= Negative Events Ground Truth



Qualitative Results EC
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Qualitative Results EDS

EKLT ours
Active Tracks: 22/ 22 Active Tracks: 22/ 22

Expected Feature Age: 0.153 Expected Feature Age: 0.428

= Positive Events Slowed Down 0.3X Prediction
= Negative Events Ground Truth



Qualitative Results EDS
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Finally, our method predicts stable feature tracks in high-speed motion
in which standard frames suffer from motion blur.

Slowed Down



Furthermore, we can combine our tracker with the frame-based KLT tracker
increasing the robustness of feature tracks in high-speed motion.
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Conclusion

* We introduce the first data-driven feature tracker for event cameras,
which leverages low-latency events to track features detected in a
grayscale frame.

e Qur data-driven tracker outperforms existing approaches in relative
feature age by up to 130 % while also achieving the lowest latency.

Source Code: https://github.com/uzh-rpg/deep ev tracker
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