
Deep Curvilinear Editing: 
Commutative and Nonlinear Image Manipulation

for Pretrained Deep Generative Model

Takehiro Aoshima, Takashi Matsubara

Osaka University, Japan

TUE-PM-175

1



Preview

Deep generative models

✓ are known for generating 

high-quality images.

✘ do not provide an inherent way to 

edit images semantically.

➢We address semantic image editing for

deep generative models.
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We propose the method, which provides

✓ higher-quality image editing

✓ commutative image editing

by learning semantic commuting vector fields

in the latent space.
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Background

Methods for image editing;

•Training models under constraints

✘ Requiring computationally expensive training.

✘ Conflicting with the quality of image generation.

• Image-to-image translation

✘ Requiring computationally expensive training.

✘ Limiting editing to be discontinuous.

4Zhu+, ICCV2017.



Methods for image editing;

•Finding linear or nonlinear paths in 

latent space of pretrained models

✓ Not requiring computationally expensive training.

✓ Not limiting editing to be discontinuous.
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Linear methods (e.g., [1])

• discover linear paths.

• manipulate the latent code along the axis of 

an oblique coordinate system.

✓ provide commutative edits.

✘ sometimes fail to discover semantic paths.

Related Work

6

smile

age

[1] Voynov and Babenko, ICML2020.



Related Work

Nonlinear methods (e.g., [2])

• discover nonlinear paths 

by vector fields.

• manipulate the latent code along a vector field.

✓ discover more variety of paths.

✘ do not provide commutative edits.

7[2] Tzelepis+, ICCV2021.
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Proposed Method

We propose the method, which

✓ discovers nonlinear paths

✓ provides commutative edits

by learning semantic curvilinear coordinates.
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Experiment
We adopted the unsurpervised training 
framework for GANs.

Pretrained GANs
•SNGAN trained on MNIST dataset.
•SNGAN trained on AnimeFaces dataset.
•BigGAN trained on ILSVRC dataset.
•ProgGAN trained on CelebA-HQ dataset.
•StyleGAN2 trained on CelebA-HQ dataset.
•StyleGAN2 trained on LSUN Car dataset.

Comparison methods
•LinearGANSpace (a linear method) [1]
•WarpedGANSpace (a nonlinear method) [2]

9[1] Voynov and Babenko, ICML2020. [2] Tzelepis+, ICCV2021. 



Results (commutativity)
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•We visualize the results of editing 

attributes of an image sequentially.

O: original, V: vertical position, B: background, S: size
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O: original, V: vertical position, B: background, S: size

Results (commutativity)
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•We visualize the results of editing 

attributes of an image sequentially.

Background and object 

size are not identical



O: original, V: vertical position, B: background, S: size

Results (commutativity)
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•We visualize the results of editing 

attributes of an image sequentially.

Edits are commutative.
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Results (commutativity)
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O: original, S: smiling, B: bangs. P: pitch, Y: yaw. ProgGAN + Celeb-A HQ.

O: original, D: dark colored-hair, L: hair length. SNGAN + AnimeFaces.
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Differences between images with edits of 

two attributes applied in different order (%).

The difference of attribute score.

Results (commutativity)
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Results (quality of editing)

Rotating.

Rotating.

Getting 

thinner.

MNIST, width.

CelebA-HQ, smile.
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LSUN Car, color.

Not properly 

edit hair color.

AnimeFaces, hair color.
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Not properly 

edit car color.

Edit size.



16

Results (quality of editing)

MNIST, width.

CelebA-HQ, smile.
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LSUN Car, color.

AnimeFaces, hair color.
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Only edits 

width.

Only edit 

car color.

Only edit 

smile 

attributes.

Only edits 

hair color.
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Conclusion

•We propose to learn semantic 

curvilinear coordinates on 

the latent space.

•We demonstrate that the proposed method provides

✓ higher-quality

✓ commutative

image editing.

17


	既定のセクション
	スライド 1: Deep Curvilinear Editing:  Commutative and Nonlinear Image Manipulation for Pretrained Deep Generative Model
	スライド 2: Preview
	スライド 3: Preview
	スライド 4: Background
	スライド 5: Background
	スライド 6: Related Work
	スライド 7: Related Work
	スライド 8: Proposed Method
	スライド 9: Experiment
	スライド 10: Results (commutativity)
	スライド 11: Results (commutativity)
	スライド 12: Results (commutativity)
	スライド 13: Results (commutativity)
	スライド 14: Results (commutativity)
	スライド 15: Results (quality of editing)
	スライド 16: Results (quality of editing)
	スライド 17: Conclusion


