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® Challenge: hard to solve joint optimization of ML modules (huge search spaces)

® Motivation: among AutoML modules there exists a cooperative relationship that facilities the joint optimization of modules

® Modeling: MA2ML takes each module as an agent to formulate a multi-agent reinforcement learning problem

Huge search space
of ML pipelines

Search spaces of machine learning pipelines. Left: single agent controls all modules, and the huge
search space makes 1t ineffective to learn. Mid: each agent controls one module, and the learning

difficulty 1s reduced by introducing MA2ML. Right: MA2ML guarantees monotonic improvement

of the searched pipeline, where p* and R(p*) denote the k-th searched pipeline and its expected

performance, respectively. (NAS: neural architecture search; AUG: data augmentation; HPO:
hyper-parameter optimization.)
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® Search spaces
® AUG: AutoAugment

® NAS: NASNet / FBNetV3 (on different datasets)
® HPO: self-designed search spaces (learning rate, weight decay...)

® Module Agent

update 1ts policy ( train & evaluate

L Performace }(

Y

{ Random State } » Architecture / Augmentation / Hyper-parameters

{ Controller
mput J samples according to its policy

A; ~ g (- [S;)
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® Joint optimization

J(©) = En,(AIS)[R] where mg(AlS) = [];2; g, (A;]S))

® MA2ML-Lite

Vei](@) = LEralS) [Vel- log ﬂOi(Ai‘Si) (R — b)]

® Credit assignment

b(S,A_;) = Eg r, [Q(S,A;,A_;)] (counterfactual baseline)

® Off-policy learning

J(0) = Ena5)|Q(S, A) — ADg (m (- [S)Ip( [$))] (p = []i=; pi denotes the joint target policy)
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® Framework

MA2ML Training

{ TD Error ]

update ¢ l

. B T sample a mini-batch of (S, A, R)
Centralized Critic Q 4

credit assignment
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Replay
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store (S, A, R)
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AutoML Training

Figure 2. The framework of joint optimization with MA2ML. For AutoML training (lower panel), the ML pipeline 1s formed by the actions
sampled from the policies of agents, then it is deployed for training on the dataset and to obtain the accuracy (reward). After that, the tuple
(S, A, R) is stored in the replay buffer. For MA2ML training (upper panel), a mini-batch of (S, A, R) are sampled from the replay buffer
to update the critic, policies, and target policies.
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Experiments

81.1
® ImageNet s w
FLOP w . . >
R = Acc X [ ors ] (reward with FLOPs contraint) g3
FLOPs_constraint -
S 76,5 —e— MA2ML
n —e— MA2ML-Lite
Top-1 accuracy (%) and FLOPs of state-of-the-art AutoML methods on ImageNet, where NARS denotes g o — —— EfficientNet
neural architecture-recipe search. All compared models have computational cost close to 600M FLOPs for a 743 B ;:ﬁ
fair comparison. / —+— NASNet

Model Acc (%) FLOPs(M) Method Search Modules
DARTS [~ 73.3 574 gradient NAS

NASNet [54] 74.0 564 RL NAS

MiLeNAS [11] 75.3 584 gradient NAS

RMI-NAS [50] 75.3 657 Random Forest NAS

RegNetY [ %] 75.5 600 pop. param.” NAS

ROME [ Y] 75.5 556 gradient NAS
AmoebaNet-C [ V] 75.7 570 evolution NAS

PC-DARTS [ 7] 75.8 597 gradient NAS

BalLeNAS [+¥] 75.8 597 gradient NAS

ISTA-NAS [+4] 76.0 638 gradient NAS
Shapley-NAS [+] 76.1 582 gradient NAS

DAAS [10] 76.6 698 gradient AUG+NAS

DHA [57] 77.4 - gradient AUG+NAS+HPO
MIGO-NAS [5 1] 78.3 595 MIGO NAS

OFAT [7] 79.0 595 gradient NAS
EfficientNet-B1 [37] 79.1 700 RL NAS

FBNetV3* [7] 79.2 550 NARS NAS+HPO
L2NAS [25] 79.3 618 RL NAS

MA2ML-A 79.3 490 MARL AUG+NAS+HPO
MA2ML-B 79.7 596 MARL AUG+NAS+HPO

*Population parameterization. TResults are given in [ 5] without distillation.

Results are reproduced according to 600M FLOPs constraint without distillation.
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Comparison of MA2ML with other AutoML methods on ImageNet.
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Learning patterns of MA2ML and MA2ML-Lite on ImageNet-200
(FLOPs_constraint = 600M). Left: the average reward curves of top-20
pipelines 1n terms of patch numbers. Right: the scatter plot for average
rewards of pipelines 1n each batch.
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® CIFAR-10/100

Top-1 accuracy (%) and parameter size (MB) of compared AutoML methods on CIFAR-10 and
CIFAR-100. The results of MA2ML and MA2ML-Lite are mean and standard deviation of 5 trials

of the best ML pipeline.

Model CIFAR-10 CIFAR-100 Method
Acc (%) Param (M) Acc (%) Param (M)

NASNet-A [54]  97.60 27.6 - - RL
ENAS [27] 97.11 4.6 80.57 4.6 RL
L2NAS [25] 97.51+0.12 3.8 82.24+0.19 3.5 RL
AmoebaNet [2Y] 97.45+0.05 2.8 81.07 3.1 evolution
DARTS [2” 97.24+0.00 3.3 82.64+0.44 3.3 gradient
DARTS- [ ?] 97.41+0.08 3.5 82.49+0.25 3.3 gradient
MiLeNAS [ 1] 97.49+0.11 3.9 - - gradient
ISTA-NAS [44]  97.64+0.06 3.4 83.10+0.11 - gradient
AutoHAS [0] 95.0 - 78.4 - RL
Joint Search [ 7] 97.46+0.09 - 83.81+0.49 - gradient
DAAS [10] 97.76+0.10 4.0 84.63+0.31 3.8 gradient
DHA [57] 98.11+0.26 - 83.93+0.23 - gradient
MA2ML-Lite 97.70+0.10 7.8 84.80+0.12 9.0 MARL
MA2ML 97.77+0.07 9.0 85.08+0.14 7.7 MARL
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Learning patterns of MA2ML, MA2ML on-policy, and MA2ML-Lite on CIFAR-10. Left: average
accuracy curve of top-30 pipelines in terms of the number of batches. Right: the scatter plot for the
average accuracy of different pipelines in each batch. MA2ML outperforms MA2ML on-policy
and MA2ML-Lite consistently 1n terms of accuracy and sample efficiency.
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® MA2ML

® a general framework for the joint optimization of ML modules
® transforms the joint optimization of modules as an MARL problem

® yiclds state-of-the-art top-1 accuracy on ImageNet under several constraints of computational cost

® Advantages
® can be extended to more modules
® agnostic to search spaces
® can be generalized to different tasks

® directly optimizes the reward



