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Skeleton-based action recognition

ﬂ\ Skeletons vs RGB
Convey the action succinctly
l Reduce the impact of scene and
[ - } object biases

l Reduced privacy concerns
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Key motivation of our approach
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 Data augmentations play a key role in contrastive learning

e Diversity and strength of augmentation
e Multi-view / Multi-crop strategy is shown to be helpful

* Crafting plausible augmentations for skeletons is challenging

Skeleton-Contrastive 3D Action Representation Learning, Thoker et al. 2021.
Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations, Van Gansbeke et al. 2021
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 Data augmentations play a key role in contrastive learning

e Diversity and strength of augmentation
e Multi-view / Multi-crop strategy is shown to be helpful

* Crafting plausible augmentations for skeletons is challenging

Can we hallucinate positives in the latent space ?

Skeleton-Contrastive 3D Action Representation Learning, Thoker et al. 2021.
Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations, Van Gansbeke et al. 2021



Hallucinate new positives in the input space
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We propose an objective function which can be used to generate positives of
varying level of hardness
Relaxations to the objective allow for closed form making the process very fast

Final solution involves spherical linear interpolation of the anchor with a
randomly chosen data prototype
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Final solution involves spherical linear interpolation of the anchor with a
randomly chosen data prototype



Why skeleton-based action recognition ?

Convey the action succinctly

Reduce the impact of scene and
object biases

Reduced privacy concerns

An example from Johansson’s experiment

Visual perception of biological motion and a model for its analysis, Johansson, Gunnar. 1973



Self-supervised skeleton-based action recognition

3D Skeleton
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* Various pretext tasks proposed in the past : Skeleton coloring, masked
modeling, contrastive learning
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* Other research directions : encoders, augmentations, additional modalities

Skeleton cloud colorization for unsupervised 3d action representation learning, Yang et al. 2021

Contrastive learning from extremely augmented skeleton sequences for self-supervised action recognition, Guo et al. 2022

CMD: Self-supervised 3D Action Representation Learning with Cross-Modal Mutual Distillation, Mao et al. 2022



Data augmentations are critical

Crop
Cutout

Color

Sobel
(a) Original

Noise

1st transformation

Blur

Rotate

(f) Rotate {90°, 180°,270°} (g) Cutout (h) Gaussian noise (i) Gaussian blur (j) Sobel filtering GQQ
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2nd transformation

Examples of image data augmentations Composition of transformations is crucial

A simple framework for contrastive learning of visual representations, Chen et al. 2020



Augmentations for skeletons is hard
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 Data augmentations require domain knowledge
* Crafting plausible augmentations for skeletons is challenging

Skeleton-Contrastive 3D Action Representation Learning, Thoker et al. 2021

Hierarchical Consistent Contrastive Learning for Skeleton-Based Action Recognition with Growing Augmentations, Zhang et al. 2022
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Multi-view/Multi-crop strategy is helpful
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 Multi-view has been shown to be helpful but is expensive to train

e Difficulty in designing data augmentations for skeletons makes
multiview more challenging

Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations, Van Gansbeke et al. 2021



Hallucinating latent positives

Does not require hand crafting new augmentations

Generating multiple views is easy and inexpensive 9
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Can control for hardness and diversity



Our approach
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Momentum contrast for unsupervised visual representation learning, He et al 2020



Our approach

e Desiderata:

* We want to generate positives of varying hardness which lie far from anchor
positives

* Have the same underlying class semantics

* Key intuition : We can explore the high dimensional space around the
anchors to find locations that can be plausibly reached by the
encoder



Our approach

 Clustering on hypersphere to extract prototypes
e Use key as an anchor
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Our approach

* Formally, we define our objective as

* . . *
2" =arg min sim(z, P
ngSD_l ( ) Zk)

s.t. sim(z, P} ) > sim(z, P),VP € P\ {P} }

Zk
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Our approach
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* . . *
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* We want to generate hard positives which are far
from the anchor but have the same closest
prototype as the anchor.
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Our approach

* Formally, we define our objective as

* . . *
2" =arg min sim(z, P
ngSD—l ( ’ zk)

st. sim(z, P} ) > sim(z, P),VP € P\ {P} }

* We want to generate hard positives which are far
from the anchor but have the same closest
prototype as the anchor

* Expensive : requires iterative solver




Relaxation 1 : Restrict the search space

* Instead of searching in the whole space, we restrict the
search of a new positive in a particular direction
z = proj(zx + d),

* We define the direction as that joining the anchor and a
randomly selected prototype along the hypersphere



Relaxation 1 : Restrict the search space

* Instead of searching in the whole space, we restrict the S
search of a new positive in a particular direction =

z = proj(zx + d),

* We define the direction as that joining the anchor and a
randomly selected prototype along the hypersphere

o Prototypes P
o Anchor

* Manifold-Mixup along the geodesic

sin(1 — t)QZ N sin(¢£2)
sin 2 k sin ()
where t € [0, 1],cosQ = P z.and Q € 0, ]

d(ta Pseb Zk) = Psel — 2k



Relaxation 1 : Restrict the search space

* Instead of searching in the whole space, we restrict the 5
search of a new positive in a particular direction =

z = proj(zx + d),

* We define the direction as that joining the anchor and a

o Prototypes P
o Anchor

randomly selected prototype along the hypersphere
* Manifold-Mixup along the geodesic

* . . *
sin(1 — £)02 sin(tQ) t* = arg min sim(z, P;,_), where
. 2k + — Py — zg, E[ ’ ]
sin {2 sin {2
where t € [0,1],cos Q = Py ' 2, and Q € [0, 7] zZ=2zk+ d(t’ P, Zk)
s.t.  sim(z, P}, ) > sim(z, P;),P; € P

d(t7 Pseb Zk) =




Relaxation 2

* Instead of solving the ranking objective for all prototypes, just solve it
for closest and selected

t* = arg rr[lin] sim(z, P}, ), where
tefo,1

z = z + d(t, Peey, 21)
S.L Siﬁl(z, P;k) Z Sim(z, Psel),




Relaxation 2

* Instead of solving the ranking objective for all prototypes, just solve it
for closest and selected

b= I i B h
argtg[l(l),nl] sim(z, P}, ), where
2 = Zk = d(t7 Psela zk)

s.t.  sim(z, P} ) > sim(z, Pe),

* Let’s us derive a closed form solution

t* = 1 arctan( sin {) ), where
Y Kk + cosQ”’
1— PselTP*

z
K = k

B sz(Pz*k - Psel)’




The final approach
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Key implementation details

* Datasets:
* NTU-60
* NTU-120
* PKU-v2

* Encoder : BiGRU
* Works for both unimodal and multi-modal training

* Evaluation protocols :
* Linear evaluation
* KNN evaluation
* Transfer learning
e Semisupervised Learning



Results : Linear evaluation

Method NTU-60 NTU-120 PKU-II

x-sub x-view x-sub x-set x-sub

Additional training modalities or encoders

ISC [50] 76.3 85.2 67.1 67.9 36.0
CrosSCLR-B [3%] 717.3 85.1 67.1 68.6 41.9
CMD [38] 79.8 86.9 70.3 715 43.0
HaLP + CMD 82.1 88.6 72,6 __73.1 47.5
Training using only joint

LongT GAN [64] 39.1 48.1 - - 26.0
MSZ2L [37] 52.6 - - - 27.6
P&C [49] 50.7 76.3 427 41.7 25.5
AS-CAL [43] 58.5 64.8 48.6 49.2 -
H-Transformer [9] 69.3 72.8 - - -
SKT [61] 72.6 77.1 62.6 643 -
GL-Transformer [29] 76.3 83.8 66.0 68.7 -
SeBiReNet [41] - 79.7 - - -
AimCLR [1%] 74.3 79.7 - - -
Baseline 78.0 85.5 69.1 69.8 42.9
HaLP 79.7 86.8 71.1  72.2 43.5




Results : Linear evaluation

Method NTU-60 NTU-120 PKU-II
x-sub x-view x-sub x-set  x-sub
Additional training modalities or encoders
ISC [50] 76.3 85.2 67.1 67.9 36.0
CrosSCLR-B [3%] 77.3 85.1 67.1 68.6 41.9
CMD [38] 79.8 86.9 70.3 715 43.0
HaLP + CMD 82.1 88.6 726 731 47.5
Training using only joint
Longl GAN [64] 39.1 45.1 - - 26.0
MS2L [37] 52.6 - - - 27.6
P&C [49] 50.7 76.3 427 41.7 25.5
AS-CAL [43] 58.5 64.8 48.6 49.2 -
H-Transformer [9] 69.3 72.8 - - -
SKT [61] 72.6 77.1 62.6 643 -
GL-Transformer [29] 76.3 83.8 66.0 68.7 -
SeBiReNet [41] - 79.7 - - -
AimCLR [18] 74.3 79.7 - - -
Baseline 78.0 85.5 69.1 69.8 42.9
HaLP 79.7 86.8 711 72.2 43.5




Method To PKU-II

Results : Transfer learning and KNN evaluation

NTU-60 NTU-120

Additional training modalities or encoders

ISC [50] 51.1 52.3
CrosSCLR-B 54.0 52.8
CMD 56.0 57.0
HaLP + CMD 56.6 57.3

Training using only joint
LongT GAN [64] 44.8 -

MS2L [37] 45.8 -
Baseline 53.3 534
HaLP 54.8 55.4

Transfer to PKU-II

Method NTU-60 NTU-120
x-sub x-view x-sub  x-set
Additional training modalities or encoders
ISC [50] 62.5 82.6 506 523
CrosSCLR-B 66.1 81.3 52.5 549
CMD 70.6 85.4 583 609
HaLP+CMD 71.0 86.4 594 619
Additional training modalities or encoders
LongT GAN [64]  39.1 48.1 31.5 355
P&C [49] 50.7 76.3 39.5 418
Baseline 63.6 82.8 51.7 553
HaLP 65.8 83.6 558 59.0

kNN Evaluation



Analysis: Computational overheads

Method Time/epoch  Train GPU memory NTU-60 x-sub
Baseline 1x 1x 78.0
Hal.P 1.13x 1x 79.7
CMD 3x 1.94x 79.8

HalLP+CMD 3.32x 1.94x 82.1




Use with alternative tasks and frameworks

Approach NTU-60 x-sub
NCI-1 PROTEINS DD MUTAG CMD 79.8
GraphCL  77.87+041 74394045 78624040 86.80+ 1.3 CMD-+HaLP 82.1
+HalP  78.88+0.41 7465+0.70 79.20+0.60 89.35+1.2 AimCLR 74.3
AimCLR + HalLP 75.2

Graph Representation Learning HalLP with AimCLR
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