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Fig 1. Decoupled and Graph-empowered knowledge distillation for multimodal emotion recognition.
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« Multimodal Emotion Recognition (MER)

Multimodal emotion It is very loyal to the book  Feature Encoding

recognition (MER) aims to Happy

perceive the emotion of | Sad

humans from video clips. Feature Encoding v .
Fusion .

Video clips involve multimodal

temporal data, e.g., natural

Neutral
»—W Feature Encoding A

acoustic behaviors. Fig 2. Typical MER pipeline.

language, visual actions and
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« Towards small unimodal performance discrepancies
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Fig 3. Unimodal accuracy comparison.

» The inherent multimodal heterogeneities exist

« The contribution of different modalities varies significantly

Language excels as it can benefit from a pre-trained model, e.g., BERT

Language is descriptive, sparse, intrinsically semantic

Vision/image is redundant

Audio is quite weak with few semantics
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« Towards small unimodal performance discrepancies

—————————————————

T4 *

(o Language \ Conventional cross-modal distillation mechanism has drawbacks:
| It is very loyal to the book :—F L :
| |

i

| Vision i - Distillation direction or weights are cumbersome

I — — I

[ \ \ I

i w et w i >V  Multimodal feature distribution mismatch hinders the distillation
! I

i

i Acoustic i effects

\ ;' —.‘A

Fig 4. Conventional knowledge distillation for MER.
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Fig 5. Our proposed Decoupled Multimodal Distillation.
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« Feature Decoupling
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Fig 6. Multimodal Feature Decoupling with self-supervision and contrastive learning.
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« Two-level Self-supervised

Constraints.

« Margin-based contrastive loss.

Decompose multimodal
feature into homo-/

hetero-geneous spaces.
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« Graph-empowered KD in Homo- space

. In homo- space, KD can be conduct directly:.
ey
coom - ; GD-Unit

Graph Distillation:

« Graph node: multimodal

feature.
« Graph edge: distillation

direction and weight.
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Fig 7. Homogeneous Knowledge Distillation with a Graph Distillation Unit.
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Fig 8. Heterogeneous Knowledge Distillation with a GD-Unit.
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In hetero- space, KD
should be performed
after multimodal feature

adaptation.
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« Graph-empowered KD
Notations: T, Learnable Graph Edge:

« A GD-Unit consists of a // \ The graph edge w;—; means
directed graph G distillation strength. We encode the

< = V4 modality logits and the features into

 Node U; denotes a modality

«  W;—s; indicates distillation the graph edges:

strength fromito j wi—j; = g([[f(Xs, 01), Xs], [f(X;,01), X]], 02)
« €;— 5 denotes distillation loss.
For a target modality, the Benefits of Graph-empowered KD:

weighted distillation loss is:  Learnable KD strength

Cj = Zv_eN(,U_) Wi—yj X €i—yj « Adjustable KD direction
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« Datasets
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« CMU-MOSIM is a MER dataset consisting of 2,199 short monologue video clips (each lasting

the duration of a sentence).

« CMU-MOSEIDP! is a larger MER dataset, which contains more than 23,500 sentence utterance

videos from more than 1000 online YouTube speakers.

A === K

Fig 9. Example face illustration in CMU-MOSEI dataset.
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* Numeric comparisons
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Fig 10. DMD consistently obtains superior MER accuracy.
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4. Experiments

 Homogeneous Feature Visualization

(2) DMD (w/o Hom., Het.) (b) DMD (w/o Het.) (c) DMD
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Fig 11. DMD shows the promising emotion category separability in sub-figure (c).
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« Heterogeneous Feature Visualization

(a) DMD (w/o Hom., Het.) (b) DMD (w/o Het.) (c) DMD

Fig 12. We randomly selected 400 samples for t-SNE visualization,
DMD shows the best modality separability in sub-figure (c).
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Graph Edge Visualization
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(b) Graph edges in HeteroGD

Fig 13. Six graph edge visualization for each MER dataset.

1

10

20 30 40 50
Epoch

((

10

20 30 40 50
Epoch

[

0

10

20 0 40 50
Epoch

JUNE 18-22.2023 ¢

CVPRA

In the two decoupled spaces, L —
A and L — V dominates because
language contributes most.

In HeteroGD, V' — A emerges
because vision is enhanced a lot via
the multimodal transformer

mechanism.
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4. Experiments
Attention Visualization
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Fig 14. In the top row, DMD builds reliable correlations between elements across modalities.
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We have proposed a Decoupled Multimodal Distillation (DMD) for MER.
DMD decouples the multimodalities into homogeneous and heterogeneous spaces.
DMD exploits graph-empowered Knowledge Distillation for robust MER.

Thanks for
your
attention!

Public Code:

https://github.com/mdswyz/DMD
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