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* Uni-Perceiver v2 . A generalist model for large-scale vision and vision-language tasks
* Handles a broad range of vision / vision-language tasks without finetuning

* Outperforms all existing generalist models in both versatility and performance

* Achieves competitive performance compared with commonly-recognized task-specific strong baselines
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* Uni-Perceiver v2 ;. A generalist model for large-scale vision and vision-language tasks
» Handles a broad range of vision / vision-language tasks without finetuning
* Outperforms all existing generalist models in both versatility and performance

* Achieves competitive performance compared with commonly-recognized task-specific strong baselines
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* Foundation models pretrained on large-scale image-text pairs show strong performance on a
series of downstream tasks
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* Foundation models pretrained on large-scale image-text pairs show strong performance on a

series of downstream tasks

* Foundation models are not general enough — they need finetuning
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* Foundation models pretrained on large-scale image-text pairs show strong performance on a

series of downstream tasks

* Foundation models are not general enough — they need finetuning
* Enough data needs to be collected and labeled for training on each downstream task
* Task modules (e.g., detection heads) need to be designed and trained

* Thousands of models for thousands of tasks / real-world scenarios

Foundation Models (e.g., Florence, BEiT-3, CoCa)
Task-Specific Finetuning

Image
I 9 , I
Image — Egs — Dgis Classification ITEgE Eree —~— Image-Text
Image— E! AW e Efet v fewenl
. . Pre-training q I Object
Pre-training o Tasks Image — [Eger | = Ddet =™ petection
Text —> ET | — El
mage cap N\ Image
; ~ Dcap —Captioning
Image — Eseg o Dseg - Text _’Eg:wap

#Piotal = Nipgk X #Pg1 + N g X #Ppr + (#Ppgs + #Ppge, + #Ppy ey + +)



* Foundation models pretrained on large-scale image-text pairs show strong performance on a
series of downstream tasks
* Foundation models are not general enough — they need finetuning

* Enough data needs to be collected and labeled for training on each downstream task
* Task modules (e.g., detection heads) need to be designed and trained

* Thousands of models for thousands of tasks / real-world scenarios

 How to design a generalist model capable of handling different tasks without finetuning?



 How to design a generalist model capable of handling different tasks without finetuning?

 Difficulties:
* Different tasks have different representations and output forms
* Different tasks may conflict with each other with shared parameters

* Multi-task joint training requires trade-off between tasks, which is tricky



* Difficulty #1: Different tasks have different representations and output forms

* Representation: Encoding images as general region proposals
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* Difficulty #1: Different tasks have different representations and output forms
* Representation: Encoding images as general region proposals

e Qutput: Employing the unified task formulation of Uni-Perceiver

In Uni-Perceiver, different tasks are identified as different input set X and candidate output

set Y. Given x € X, the task is defined as finding y € Y with the maximum likelihood x.

Cosine Similarity

The likelihood between input x and target y
P(z,y) o exp (cos (f(2), f(y))/7)

P(z,y) o exp (cos (f(z), f(y))/7)

Given x, the target y with the maximum likelihood
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e Unified Task Formulation of Uni-Perceiver

* Image Classification
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e Unified Task Formulation of Uni-Perceiver

* Object Detection

Object Detection
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e Unified Task Formulation of Uni-Perceiver

* Image Captioning
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* Difficulty #2: Different tasks may conflict with shared parameters

* Solution: We employ the Conditional MoE proposed in Uni-Perceiver-MoE

COCO | ImageNet-1k COCO COCO

Tasks ) ) ) ) .

Detection | Classification Retrieval Caption
Single Task 50.1 76.1 50.0 37.6 30.2
All Tasks 49.8 76.3 46.0 34.7 28.9
wio Detection - 76.6 (+03) |47.0(+1.00 34.6(—0.1)|30.4 (+0.5)
wio Classification | 50.1 (+0.3) - 51.6 (+56) 38.6(+3.9)|25.9 (-3.0
wio Retrieval 49.5 (-03)| 76.3 (+0.0) - - 27.4 (—15)
wio Captioning 49.7 (—0.ny| 76.3+00) |51.2+52) 38.3(+3.56) -
All Tasks w MoE [49.9 (+0.1)| 76.9 (+06) |51.3(+53) 38.8 (+4.1)[30.6 (+0.7)




* Difficulty #3: Multi-task joint training requires trade-off between tasks, which is tricky

e Solution: We propose improved optimization strategy for multi-task training

*  Unmixed sampling strategy : All GPUs share the same task in one iteration

* Increases batch-size, which improves efficiency and performance

* Reduces the synchronization cost caused by the different iteration time of different tasks

» Difficulty: the gradients differ significantly between iterations, causing training instability
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* Difficulty #3: Multi-task joint training requires trade-off between tasks, which is tricky

e Solution: We propose improved optimization strategy for multi-task training

*  Unmixed sampling strategy : All GPUs share the same task in one iteration

e Task-Balanced Gradient Normalization: Adaptively normalize the gradients of each task to

stabilize the training with unmixed sampling strategy

Task-Balanced Gradient Normalization
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Task  Gather TBGN COCO |ImageNet-1k | COCO | COCO
Sampling Feature Detection | Classification | Retrieval | Caption
mixed 49.6 76.7 40.1 319| 27.6
unmixed 49.2 76.6 39.8 30.9| 275
unmixed v 49.3 76.8 50.4 373 27.6
unmixed VvV v 49.9 76.9 51.3 38.8| 30.6




« Experiments

Image Object Instance Image Text Image
Methods #params Classification Detection Segmentation  Captioning Retrieval Retrieval
ImageNet-1k  COCO COCO COCO COCO Flickr30k COCO Flickr30k

Acc mAP mAP B@4 CIDEr R@l1 R@1 R@1 R@1
Pix2Seq v2 [5] 132M - 46.5 38.2 34.9 - - - - -
UniTab [43] 185M - - - - 115.8 - - - -
Unified-10 y argg [23] 776M 71.8 - - - - - - - -
Unified-10 . [23] 2.9B 79.1 - - 122.3 - - - -
Flamingo-3B [1] 3.2B - - - - - 65.9 89.3 48.0 79.5
Uni-Perceiver gasg [50] 124M 79.2 - - 32.0 - 64.9 82.3 50.7 71.1
Uni-Perceiver  argg [50] 354M 82.7 - - 353 - 67.8 83.7 54.1 74.2
Uni-Perceiver-MoE gasg [49] 16T 80.3 - - 33.2 - 64.6 82.1 51.6 72.4
Uni-Perceiver-MoE | arce [49] 505M 834 - - 35.5 - 67.9 83.6 55.3 75.9
Uni-Perceiver-v2 gasg 308M 86.3 58.6 50.6 354 1169 718 88.1 55.6 73.8
Uni-Perceiver-v2  rce A46M 87.2 61.9 53.6 365 1225 75.0 89.3 58.5 79.6

(+3.8) (+15.4) (+15.4) (+1.6) (+0.2) (+7.1) (+0.0) (+3.2) (+0.1)

* Uni-Perceiver v2 outperforms all existing generalist models.

* Uni-Perceiver v2 supports core vision tasks (e.g., object detection / instance segmentation)
that existing generalist models do not support.



« Experiments

Task Specific Fine-tuned Models - Uni-Perceiver v2 - Previous SoTA Generalist models
Image CocCo Instance Coco Ccoco Coco Flickr30k Flickr30k
Classification Detection Segmentation Image Caption Text Retrieval Image Retrieval Text Retrieval Image Retrieval
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* Uni-Perceiver v2 achieves competitive performance compared with commonly-recognized
task-specific strong baselines that require fine-tuning.



Uni-Perceiver series

% Uni-Perceiver (CVPR 2022)

« Proposes the unified task formulation and handles a broad range of tasks with a single
model and shared weights

% Uni-Perceiver-MoE (NeurIPS 2022)
« Proposes conditional MoE that effectively mitigate the task interference in multi-task
learning

% Uni-Perceiver v2 (CVPR 2023)

- Outperforms all existing generalist models in both versatility and performance
« Achieves competitive performance compared with commonly-recognized task-specific
strong methods

Code & Models (in progress) : https://github.com/fundamentalvision/Uni-Perceiver



https://github.com/fundamentalvision/Uni-Perceiver

