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Modeling and learning the representation of neural networks can be used to predict their
attributes of themselves without running the actual estimation procedures, thus improving the
efficiency of network design and deployment.

In this paper, in oder to learn general and reasonable representation of neural network, we
propose:

a simple and effective neural network encoding approach to tokenize both operation and topology
information of a neural network node into a sequence;

a multi-stage fusion transformer to learn feature representations;

an information flow consistency augmentation and an architecture consistency loss to facilitate
efficient model training.
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1. Background: what is neural network representation learning and why to do?
2. Motivation

3. Proposed method: NAR-Former

4. Experiments: accuracy prediction, latency prediction, ablation study

5. Conclusion
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1. What is neural network representation learning
Ground Truths:
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Neural network forms that may need to be encoded in reality:
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The existing mothod that also try to introduce the transformer to neural network representation learning:

Thanks to the powerful capabilities of the transformer, this method achieves promising performance.
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[1] Shun Lu, Jixiang Li, Jianchao Tan, Sen Yang, and Ji Liu. Tnasp: A transformer-based nas predictor with a selfevolution framework.
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Existing methods generate final representations by directly summing or averaging the features of all nodes, which are
very concise and popular approaches
However, these approaches may lose information during the rapid compression process
However, attributes of architectures are usually expensive to acquire

The amount of training architecture-attribute data pairs has a significant impact on the effectiveness of the model
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Figure 1. Overview of our NAR-Former. We first encode an input architecture x to a pure sequence 1" with a proposed tokenizer. A multi-
stage fusion transformer is designed to learn a vector representation e from 7". x’(optional) is an augmented architecture of = generated
by our information flow consistency augmentation. The bottom part shows the loss function used in this paper. SR_loss is designed for
learning more accurate sequence ranking. AC_loss is a proposed architecture consistency loss.
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Architecture Encoding Scheme

Architecture encoding
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. Figure 2. (a) An example of architecture with 6 operations(N =
f(p) = [sin(byprr), cos(bypr),-- -, sin(brpm), cos(brpm)]. 6). (b) Conversion table from operation categories to indexes. (c)
Encoding scheme of our tokenizer.
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Multi-Stage Fusion Transformer
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Figure 3. Multi-Stage Fusion Transformer. Token sequence T
1s first transformed into feature map H by standard transformer
blocks, and then gradually fused into a one-token feature vector e.
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Figure 4. Isomorphic examples of Fig. 2(a). (a) and (b) are aug-
mented architectures that maintain the consistency of information
flow, while (c) is not.
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Table 1. Results on NAS-Bench-101 [-10](depth=2~7). Kendall’s
Tau is calculated using predicted accuracies and ground-truth ac-
curacies. Three different proportions of the whole dataset are
used as the training set. “SE” refer to self-evolution proposed by

Table 2. Results of on NAS-Bench-201 [10](depth=8). Kendall’
TNASP [ 7] to improve prediction performance. i b oy L e b >

Tau is calculated using predicted accuracies and ground-truth ac-
curacies. Three different proportions of the whole dataset are
Training Samples . wQp :

used as the training set. “SE” refer to self-evolution proposed by

01% 0.1% 1% 5% < 2 3 5
B Mefhiod (424)  (424) (4236) (21180) TNASP [ ] to improve prediction performance.
Test Samples
100 all all all Training Samples

CNN ReNAS [Y] 0.634 0657 0.816 - Backbone Model (781) (1563) (7812)
LSTM NAO [24] 0.74 0666 0.775 - 5% 10% 50%

NAO+SE 0.732 0.680 0.787 - LSTM NAO [24] 0.522 0.526 -

NP [36] 0.710 0679 0.769 - NAO + SE 0.529 0.528 -
GCN NP +SE 0.713 0684 0.773 - GCN NP [36] 0.634 0.646 -

CTNAS [4] 0.751 - - - NP + SE 0.652 0.649 -

TNASP [23] 0.752 0.705 0.820 - TNASP [23] 0.689 0.724 -
Transformer TNASP+ SE 0.754 0722 0.820 - Transformer TNASP + SE 0.690 0.726 -

NAR-Former 0.801 0.765 0.871 0.891 NAR-Former 0.849 0.901 0.947




Table 3. Performance of searched architectures using different
NAS algorithms in DARTS [19] space on CIFAR-10 [16]. T de-
notes using cutout [V'] as data augmentation.

Params  Topl No. of Search

Mode! M)  Acc(%) archs Cost(G-D)
VGG-19 [ ] 20.0 95.10 0 0
DenseNet-BC [ 1 1] 25.6 96.54 0 0
Swin-S [27] 50 94.17 0 0
Nest-S [17] 38 96.97 0 0
Ransom search 32 096.71 - -
NASNet-AT [14] 3.3 9735 20000 1800
AmoebaNet-AT [29] 3.2 96.66 27000 3150
PNAS [18] 3.2 96.59 1160 225
NAONet [21] 28.6 97.02 1000 .
GATES' [26] 4.1 97.42 800 -
ENAST [27] 4.6 97.11 - 0.5
DARTST [19] 34 97.24 - 4
CTNAST [4] 3.6 97.41 - 03
TNASPT [23] 37 9748 1000 0.3
NAR-Former' 38 97.52 100 0.24

Table 7.
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Verification of predictor’s effectiveness using neural
structure search experiments on MobileNet space.

ImageNet Search Cost
Model Topi (%) MACs (GPU hours)
OFA ] 76.00 230M 40
NAR-Former 76.36 378M 1.63
NAR-Former 76.90 571IM 2.00

Table 6. Latency prediction on NNLQP [20].
notes the model type that used as test set.

“Test Model” de-

Test Model Method MAPE]  ACC(10%)t
FLOPs 5836%  0.05%
EfficientNet TPU [14] 16.74%  17.00%
depth=242 NNLQP [20]  21.33%  24.65%
NAR-Former  28.05%  24.08%
FLOPs 80.41%  0.00%
Nas-Bench-201 TPU [14] 58.94%  2.50%
depth=112~247  NNLQP[20]  8.76% 67.10%
NAR-Former  4.19% 95.12%




JUNE 18-22, 2023

CVP R VANCOUVER CANA

Table 5. Ablation study. The “Self_ID"” represents the way in which the self position information 1s combined with other information. The
number in parentheses indicates the amount of augmented data. All experiments follow the setting of 1% proportion in Sec. 4.2.

Row  Architencture Predictor Self ID SR_loss GIAug[i8] OurAug ACloss Kendall's
Encoder Type (+3812) (+2421) Tau
| TNASP [ 23] Transtformer in | | - - - - - 0.8200
2 NP [36] GCN in [ 6] - - - - - 0.7694
3 Tokenizer Transformer in [ -] Add - - - - 0.8416
- Tokenizer Transformer in [’ ?]] | Concat - - - - 0.8477
S Tokenizer GCN in [10] Concat - - - - 07953
6 Tokenizer ulti-stage fusion  Concat - - - - 0.8481
T Tokenizer Concat - - v - 0.8035
8 Tokenizer Concat - - v v 0.8060
9 Tokenizer Multi-stage foston  Conca v - - = 0.8495
10 Tokenizer Multi-stage fusion Concat v v - - 0.8625
11 Tokenizer Mul{i—stage fusion Concat v v - v 0.8643
12 Tokenizer Multi-stage fusion Concat v - v - 0.8579
1B Tokenizer Multi-stage fusion ~ Concat v - v v 0.8712
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We propose an effective neural architecture representation learning framework that are consisted of
linearly scaling network encoders, a transformers based representation learning model, and an
effective model training method with data augmentations and assisted loss functions.

Experiments show that our framework are capable of improving the accuracy of downstream
prediction tasks while overcoming scale limitations on input architectures.

Although not the scope of this work, we believe this framework can also be extended for other down

stream tasks, such as predicting the quantization loss or searching for the best mixed precision model
inference strategies.
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Thanks for your listening!

lIP Lab: https://iip-xdu.github.io

Intellifusion: https://www.intellif.com/

Codes link: https://github.com/yuny220/NAR-Former



