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Motivation

• Problems:

❑ unaware of compression level

▪ artifacts

▪ detail loss

❑ disregard of meta data

• Solution:

❖ take advantage of meta data to facilitate the base VSR 

❖ be aware of compression with input videos and exert power adaptively.



Contribution

• A compression encoder to perceive compression levels of 
input frames.

• A compression-aware modulation module to encourage the 
base model to perform adaptively under various compression.

• Alignment and propagation process assisted by metadata.



Meta Data of Compressed Videos
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• Pretraining
➢ Learning to rank

Ranking Loss Function:

ℒ𝑅 = 𝑚𝑎𝑥 0, 𝑠𝑖 − 𝑠𝑗 ∗ 𝜅 + 𝜉

𝑤ℎ𝑒𝑟𝑒 ൝
𝜅 = 1 if 𝑄𝑓/𝑐(𝑖) < 𝑄𝑓/𝑐(𝑗)

𝜅 = −1 if 𝑄𝑓/𝑐(𝑖) > 𝑄𝑓/𝑐(𝑗)
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Approach

• Compression Encoder

• Compression-Aware Modulation
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𝐶𝐴𝑀(𝐅|𝛾𝑖 , 𝛽𝑖) = 𝛾𝑖 ⊙𝐅+ 𝛽𝑖



Approach
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ℎ𝑡 = ෨ℎ𝑡 otherwise,

• Meta-assisted alignment.

• Meta-assisted Propagation.

where,

෨ℎ𝑡 current hidden state,
෠ℎ𝑡−1 aligned previous hidden state 

𝛼 momentum coefficient



Evaluation

Params

(M)

Runtime

(ms)

Vid4 (Y) REDS4 (RGB)

CRF 15 CRF 25 CRF 35 CRF 15 CRF 25 CRF 35

EDVR 20.6 378 26.53/0.794 24.76/0.694 22.39/0.544 29.31/0.836 26.27/0.742 23.78/0.625

RealBasic

VSR
6.3 63 26.94/0.813 24.87/0.701 2239/0.531 29.76/0.849 26.49/0.746 23.63/0.626

COMISR 6.2 73 26.66/0.801 25.14/0.713 22.62/0.546 29.76/0.832 26.96/0.749 23.87/0.629

FTVSR 10.8 850 27.50/0.826 25.51/0.732 22.79/0.561 30.89/0.864 28.10/0.786 24.83/0.674

Ours 8.9 93 27.42/0.833 25.65/0.742 22.84/0.574 30.76/0.873 28.15/0.798 24.93/0.682

• Our method outperforms most of the previous VSR methods on the three compression 

levels both in PSNR and SSIM.

• Compressed to the latest FTVSR model, our method obtains comparable performance 
with lighter computation and GPU memory usage



Comparison to Existing Methods

• smoothing out noise, 
• preserving details, 
• maintaining temporal 

consistency



Ablation Studies 

CAM OA MA MH CRF 15 CRF 25 CRF 35

√ 26.76 24.54 22.06

√ √ 27.25 25.41 22.74

√ √ 27.40 25.60 22.80

√ √ √ 27.42 25.65 22.84

• With the compression-aware modulation (CAM)

• Being awarded of compression level performance improved significantly

• Replacing optical flow alignment (OA) with meta-assisted alignment (MA)

• More accurate motion estimation and improved temporal consistency

• With meta-assisted propagation (MP)

• The propagation process is more stable, resulting in fewer artifacts



Performance of Compression Encoder

loss data
CRF 15 CRF 25 CRF 35

CL RL CRF IBP

(a) √ √ 26.76 24.54 22.06

(b) √ √ √ 27.25 25.41 22.74

(c) √ √ 27.40 25.60 22.80

(d) √ √ √ 27.42 25.65 22.84

                                    

                                                                    

                                        

                                    

                                                                    

                                        

• Pretraining with ranking learning is more effective than contrastive learning and training

• Introduction of frame type information can improve the performance



Conclusion

• A compression encoder and a compression-aware modulation 

• Perceiving compression level using rank-based pretrained encoder 

• Modulating feature extraction stage based on compression 

representation

• A meta-assisted alignment and propagation process

• Leveraging the information from bitstream to enhance motion and 

temporal consistency modeling

• A meta-assisted propagation strategy

• The propagation process is more stable, resulting in fewer artifacts

• Reducing the computational cost and parameters of the optical flow 

network


