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Background

DNNs have become ubiquitous tool in developing data-driven services.

* DNNs cause unintended
memorization

* Power lies in the large
parameter space

i

* DNNs may memorize
sensitive or flawed data

* DNNs with poor interpretability
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Early studies

Retrain Acceleration for DNN Models :
SISA
Amnesiac unlearning
Deltagrad
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pdating Parameters for DNN Models
Fisher forgetting
NTK forgetting
SSSE
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‘ have to intervene the original training pipeline
and hurt the utility of the DNN model

» cost too much computational resource

Problem: How to reduce the computational complexity?



Observations

the forgetting samples spread around the decision space of

the retrained DNN model
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Motivation

Parameter space Decision space



Our approach

Original
Boundary

Find the nearest but incorrect labels.

Boundary Shrink
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Finetune with the relabeled samples.

Original
Boundary
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Boundary Expanding

High level overview of Boundary Unlearning




Our approach

how to shift the boundary & which direction to shift? = Boundary Shrink

Finetune with ra%y labeled data. Shrink the decision space of forgetting sampleg



Our approach

how to shift the boundary & which direction to shift? = Boundary Shrink

Step 1: Neighbor searching
/ .
X'f =Xy +€-sign(Vx, L(Xf,¥y, Wo))

Step 2: Finetune with (X, Y,,pi)
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Our approach

how to shift the boundary & which direction to shift? = Boundary Expanding

speed-up version

/ .
W = argimnin E E(Xia Y shadow WO)
W
(Xi,Y shadow) ED ¢
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Evaluation Results

» Dataset and Model Architecture

Dataset

Vggface2 ResNet50 Face recognition

» Evaluation metrics

* accuracy metric: accuracy on Dy, D¢, Dyt and Dy;.
« privacy metric: the attack success rate (ASR) of membership inference attack.

e time consumption: time consumed by the each unlearning method.
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« Utility Guarantee

Evaluation Results

) Original Retrained ) Negative @ Random | Boundary Boundary
Datesets Metrics Finetune . . .
DNN model | DNN model Gradient Labels Shrink Expanding
Accon D,  99.97 100.00 100.00 97.16 98.49 99.24 98.03
CIFAR-10  AcconDy  99.92 0.00 0.22 7.84 10.40 5.94 8.96
AcconD,; 84.83 85.74 86.50 80.42 81.81 83.13 81.07
Accon Dy 81.20 0.00 0.10 6.50 7.50 5.94 7.00
AcconD,  99.94 100.00 99.52 96.57 98.89 98.57 98.20
Vggface2 AcconDy  98.57 0.00 0.00 2.85 4.29 1.54 4.22
AcconD,; 98.87 99.06 99.96 99.58 95.14 99.72 97.12
Accon Dy, 97.14 0.00 5.52 7.26 2.86 0.87 1.41
Metrics Accon D, AcconD; AcconD,; Accon Dy,
Amnesiac Unlearning  95.79 0.00 81.50 0.00
Fisher Forgetting 61.62 1.80 54.20 1.60
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Evaluation Results

* Privacy Guarantee and Time Consumption
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Boundary Unlearning methods can achieve a better
performance on privacy guarantee effectively and quickly,
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Evaluation Results

* Visualization of Decision Space
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(a) Original
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(b) Retrained

(c) Boundary Shrink

Boundary Unlearning imitated boundary of retrained
model and thus accomplishes the unlearning efficacy.

Class 5(forget)
Class 6
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Class 10

(d) Boundary Expanding
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Evaluation Results

* Distribution of the Entropy of Model Output

o7 Original Model o Retrained Model o7 Boundary Shrink o Boundary Expanding o Random Labels

remaining data remaining data remaining data remaining data remaining data
06 forgetting data 06 forgetting data 0® forgetting data 06 forgetting data 06 forgetting data
0.5 - testing data 0.5 A testing data 0.5 1 testing data 0.5 testing data 0.5 A testing data
0.4 1 0.4 0.4 0.4 1 0.4
0.3 0.3 1 0.3 0.3 1 0.3 1
0.2 1 0.2 0.2 4 0.2 1 0.2
0.1 0.1 0.1 0.1 1 0.1
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the unlearned model predicts them with low confidence
like predicting the testing samples.
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Evaluation Results

 Impact of Number of Samples Needed
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Boundary Shrink can still forget the entire class with less
forgetting samples
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Evaluation Results

 Combination of Boundary Shrink and Boundary Expanding

100

== Boundary Shrink
EA Boundary Expanding
BE== Expanding+Shrink

B Shrink+Expanding
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“first running Boundary Expanding and then Boundary
Shrink” may be the best combination
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Conclusion

* Boundary Unlearning: the first machine unlearning methodology to remove information of an entire class

from a trained DNN by shifting the decision boundary

* We envision our work as a practical step in machine unlearning towards revealing the relationship

between decision boundary and forgetting

* More interesting results in the paper R
v Attention map before and after unlearning *
v Discussion on utility and privacy guarantee of unlearning
v" Boundary Shrink with different hyperparameters E]



