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Background

DNNs have become ubiquitous tool in developing data-driven services.

• Power lies in the large
parameter space

• DNNs with poor interpretability

• DNNs cause unintended
memorization

• DNNs may memorize
sensitive or flawed data
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Early studies

Retrain Acceleration for DNN Models：
SISA

Amnesiac unlearning
Deltagrad

…

Updating Parameters for DNN Models：
Fisher forgetting
NTK forgetting

SSSE
…

have to intervene the original training pipeline
and hurt the utility of the DNN model

cost too much computational resource

Problem: How to reduce the computational complexity?
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Observations

• the forgetting samples spread around the decision space of

the retrained DNN model

• most of the forgetting samples move to the border of

other clusters.

• the utility guarantee can be achieved by only destroying the
boundary of the forgetting class but maintaining the
boundary of the remain classes

• the privacy guarantee can be accomplished by pushing
the forgetting data to the border of other clusters

Decision Space of the Retrained DNN
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Motivation

Parameter space Decision space
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High level overview of Boundary Unlearning

Our approach
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Finetune with randomly labeled data. Shrink the decision space of forgetting sample

Our approach

how to shift the boundary & which direction to shift? ⇒ Boundary Shrink
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Step 1: Neighbor searching

how to shift the boundary & which direction to shift? ⇒ Boundary Shrink

Step 2: Finetune with (x, 𝑦!"#)

Our approach
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how to shift the boundary & which direction to shift? ⇒ Boundary Expanding

New area

speed-up version

Our approach
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Dataset Model Task

CIFAR-10 All-CNN Image
classification

Vggface2 ResNet50 Face recognition

ØDataset and Model Architecture

ØEvaluation metrics
• accuracy metric: accuracy on 𝐷!, 𝐷",  𝐷!# and  𝐷"#.

• privacy metric: the attack success rate (ASR) of membership inference attack.

• time consumption: time consumed by the each unlearning method.

Evaluation Results
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Evaluation Results

• Utility Guarantee
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Evaluation Results

On CIFAR-10 On Vggface2 On CIFAR-10

Boundary Unlearning methods can achieve a better
performance on privacy guarantee effectively and quickly.

• Privacy Guarantee and Time Consumption

13



Evaluation Results

• Visualization of Decision Space

Boundary Unlearning imitated boundary of retrained
model and thus accomplishes the unlearning efficacy.
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Evaluation Results

• Distribution of the Entropy of Model Output

the unlearned model predicts them with low confidence
like predicting the testing samples.
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Evaluation Results

• Impact of Number of Samples Needed

Boundary Shrink can still forget the entire class with less
forgetting samples
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Evaluation Results

• Combination of Boundary Shrink and Boundary Expanding

“first running Boundary Expanding and then Boundary
Shrink” may be the best combination
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Conclusion

• Boundary Unlearning: the first machine unlearning methodology to remove information of an entire class

from a trained DNN by shifting the decision boundary

• We envision our work as a practical step in machine unlearning towards revealing the relationship

between decision boundary and forgetting

• More interesting results in the paper

ü Attention map before and after unlearning

ü Discussion on utility and privacy guarantee of unlearning

ü Boundary Shrink with different hyperparameters
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