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Proposed Approach
The existing image editing methods focus on discovering semantic latent directions 
associated with individual visual attributes, and a sequential manipulation process is thus 
needed for multi-attribute manipulation. 
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• The proposed model infers a single step of latent 
space walk to s imultaneously manipulate 
multiple attributes.

• We jointly train a latent mapping network with 
an auxiliary attribute classifier.

• Our latent mapping network breaks down the 
challenging multi-attribute manipulation task into 
sub-tasks: inferring diverse semantic directions 
and integrating the target-related ones into a 
single transformation vector. 



Structure of TUSLT
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• The key of TUSLT is to jointly learn a mapping network to infer the 
latent transformation and an auxiliary attribute classifier to assess 
manipulation quality.

• The proposed model consists of two learnable components: an auxiliary 
attribute classifier A trained on the CLIP-based labeled data, and a 
latent mapping network {Γ, Φ} and three pretrianed components:a 
generator �, an e4e encoder ���� and CLIP encoder {����, ����}.



Structure of TUSLT 

• Firstly, We employ the Contrastive Language-Image Pre-training(CLIP) model  
to generate pseudo-labeled data by measuring the semantic similarities 
between attribute text descriptions and training images. 
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Structure of TUSLT
• Further, we adopt a two-stage architecture for the mapping network: the earlier stage 

employs a prediction subnetwork to infer a set of semantic directions, and the latter 
stage operates on the resulting directions and nonlinearly fuses the target-related ones. 
The intermediate semantic directions are associated with preset attributes and tailored 
for the input image.
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Auxiliary Attribute Classifier

• where ���(·, ·) denotes the cosine distance between input vectors. �(�)(�) 
should be larger when �(�) and � represent the same attribute. At this point, 
we pseudo-annotate training images, and the corresponding label ỹ is 
defined as:

• Let � =  {�(1), . . . , �(�)} denote a set of text prompts, and �(�) describes the i-
th preset attribute. To identify the attributes reflected in images, we embed 
training images and � in the shared embedding space, and measure the 
semantic similarity as:

�(�)(�) = ���(����(�(�)), ����(�))

ỹ(�) =  1, �� �
(�)(�)＞� 

0,     ��ℎ������
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Latent Mapping Network

• It is challenging to directly infer the latent transformations for a variety of attribute 
combinations. To address this problem, we design a two-stage architecture for our 
latent mapping network.

• At the second stage, a fusion subnetwork � operates on the produced directions. 
We define a binary vector ∆ ∈ {0, 1}K to indicate target attributes. � learns to 
integrate the directions as indicated by ∆, and infers a residual vector ��

∆  defined 
as:

• The first stage is based on a direction prediction subnetwork Γ that produces latent 
directions denoted by Γ(w) = {��

(1), . . . , ��
(�)}, where ��

(�) associates with the preset 
attribute �, conditioned on �.

��
∆ = �(�,�∆ ⊗ �(�))
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Latent Mapping Network

�∆ = �(� + ���
∆ )

• As a result, multi-attribute manipulation can be carried out by simply adding the 
initial latent code to the residual vector. The generator � of StyleGAN is employed 
to decode the resultinglatent vector as:

• where � controls the manipulation strength. Although our mapping network 
stacks two stages, each stage has access to the latent code of the input image.



Semantically meaningful directions
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•  Single-attribute transformation results of StyleCLIP and TUSLT.



Precise manipulation on multiple attributes
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• Multi-attribute manipulation results of TUSLT and competing methods.



• Diverse image synthesis results of TUSLT and StyleCLIP.

Precise manipulation on multiple attributes
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Results on AFHQ and AnimeFace
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• We also show the ability of the proposed model to manipulate multiple 
attributes on AFHQ-cats/dogs and AnimeFace.



Conclusion

• We propose a text-guided unsupervised multi-attribute mani-
pulation model to edit images in a single latent transformation 
step. 

• Benefiting from the cross-modal image and text representation of 
CLIP, we can jointly train an auxiliary attribute classifier and a 
latent mapping network for precise attribute manipulation. 

• This work significantly increases the scalability of StyleGAN-
based image attribute manipulation without causing any manual 
annotation cost.
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