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I Proposed Approach

The existing image editing methods focus on discovering semantic latent directions
associated with individual visual attributes, and a sequential manipulation process is thus
needed for multi-attribute manipulation.

* The proposed model infers a single step of latent
space walk to simultaneously manipulate LD TUSLT StyleCLIP ~ StyleFlow

multiple attributes. ET E] b H
* We jointly train a latent mapping network with - axf‘ T

an auxiliary attribute classifier.

* Our latent mapping network breaks down the
*Spa?e

challenging multi-attribute manipulation task into W ¥ ——_ "
sub-tasks: inferring diverse semantic directions E1 E‘1 2 E | g
and integrating the target-related ones into a +Eyegfass‘es +Smilin;. +Beard‘!" - +0fd"

single transformation vector. 2
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* The key of TUSLT is to jointly learn a mapping network to infer the
latent transformation and an auxiliary attribute classifier to assess
manipulation quality.

I Structure of TUSLT

* The proposed model consists of two learnable components: an auxiliary
attribute classifier A trained on the CLIP-based labeled data, and a
latent mapping network {I', @} and three pretrianed components:a
generator ,an ede encoder and CLIP encoder{ |, }
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I Structure of TUSLT

* Firstly, We employ the Contrastive Language-Image Pre-training(CLIP) model
to generate pseudo-labeled data by measuring the semantic similarities
between attribute text descriptions and training images.
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I Structure of TUSLT

 Further, we adopt a two-stage architecture for the mapping network: the earlier stage
employs a prediction subnetwork to infer a set of semantic directions, and the latter
stage operates on the resulting directions and nonlinearly fuses the target-related ones.
The intermediate semantic directions are associated with preset attributes and tailored
for the input image.
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I Auxiliary Attribute Classifier

elet ={D .. ()}denote a set of text prompts, and () describes the i-

th preset attribute. To identify the attributes reflected in images, we embed
training images and in the shared embedding space, and measure the

semantic similarity as:

OC)y=C (D) ()

- where  (;,-) denotes the cosine distance between input vectors. ()
should be larger when () and represent the same attribute. At this point,
we pseudo-annotate training images, and the corresponding label ¥ is
defined as:

1, OC)y>

() =
y 0




I Latent Mapping Network

* It is challenging to directly infer the latent transformations for a variety of attribute
combinations. To address this problem, we design a two-stage architecture for our
latent mapping network.

* The first stage is based on a direction prediction subnetwork I that produces latent

directions denoted by ['(w) = { (1), .
attribute |, conditioned on

* At the second stage, a fusion subnetwork operates on the produced directions.
We define a binary vector A € {0, 1}¥ to indicate target attributes. learns to
integrate the directions as indicated by A, and infers a residual vector 2 defined

das.

. ( )}, where () associates with the preset

= (., a ()



I Latent Mapping Network

* As a result, multi-attribute manipulation can be carried out by simply adding the
initial latent code to the residual vector. The generator of StyleGAN is employed
to decode the resultinglatent vector as:

 where controls the manipulation strength. Although our mapping network
stacks two stages, each stage has access to the latent code of the input image.
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| Semantically meaningful directions

* Single-attribute transformation results of StyleCLIP and TUSLT.

ORAAL:

+Purple  +Bushy-eyebr. +Eyeglasses +Surprised
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| Precise manipulation on multiple attributes

e Multi-attribute manipulation results of TUSLT and competing methods.
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| Precise manipulation on multiple attributes

 Diverse image synthesis results of TUSLT and StyleCLIP.

Input

+Red+Afro +Red+Afro +Happy+Lipstick
+Black +Purple +Blonde+Curly +Blonde+Curly +Blonde+Curly +Sad +Happy +Smoky-eyes
+Bob-cut +Straight +Surprised +Angry ~ +Happy +De-makeup +Lipstick +Bushy-eyebrows
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| Results on AFHQ and AnimeFace

« We also show the ability of the proposed model to manipulate multiple
attributes on AFHQ-cats/dogs and AnimeFace.
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| Conclusion

* We propose a text-guided unsupervised multi-attribute mani-
pulation model to edit images in a single latent transformation
step.

* Benefiting from the cross-modal image and text representation of
CLIP, we can jointly train an auxiliary attribute classifier and a
latent mapping network for precise attribute manipulation.

* This work significantly increases the scalability of StyleGAN-
based image attribute manipulation without causing any manual
annotation cost.
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