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OVERVIEW

» We propose a Selective S4 (S5) model that leverages the global
sequence-context information from S4 features to adaptively choose
informative tokens in a task- specific way.

» We introduce a novel long-short masked contrastive learning
approach (LSMCL) that enables our model to be tolerant to the mis-
predicted tokens and exploit longer duration spatiotemporal context by
using shorter duration input videos, leading to improved robustness in
the S5 model.

» We demonstrate that two proposed novel techniques (S5 model and
LSMCL) are seamlessly suitable and effective for long-form video
understanding, achieving the state-of- the-art performance on three
challenging benchmarks.

» Compared to vanilla video transformer, our work offers 10% memory
and 2.6x throughput improvements when dealing with the same input.

o

ViS4mer

)]

*‘/. ‘Performer %ST

Orthoformer

Accuracy (%)

H U U1 D
o

LVU Averaged

9]

6 7
Memory Usage (GB)

N

‘ Ours /)istant Supervision

\ ViS4mer

COIN Top-1
N

Accuracy (%)
~N ~ 0o 0 O
N N ~N

6.5 7 - 8
log (Number of Pretraining Samples)

Reference:

ViS4mer, LST: Long movie clip classification with state-space video models. ECCV 2022
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BACKGROUND

Short-term:
Objects, Spatial Relationships
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Long-term:

Temporal Reasoning, Tracking
time

A snapshot of GRINGO from Amazon Studios, showing the complex content of long-form videos. These two videos heavily overlap in terms of objects (e.g., eggs, saucepan and
stove), and actions (e.g., picking, whisking and pouring).

1. Effectiveness: Modeling long-term spatiotemporal dependencies for richer representations in various tasks.
2. Efficiency: To achieve the high effectiveness, the memory and computational burden become more severe due to the large volume of input.
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BACKGROUND

Structured State-Spaces Sequence (S4) Model

/ . 7 — Sequence length (L), batch size (B), and hidden dimension
X (t) — AX(t) + BU(t) Xk = /}Xk—1 + Buk » y = K ® u (H). Tildes denote log factors.
y(t) = Cx(t) + Du(t) Vi = Cxp Self-attention State-space
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HiPPO:Apy = —qn+1, if n=k Inference L°H+LH? H®
O, l f n < k Long Movie Clip Classification with State-Space Video Models, ECCV 2022
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1. Long Movie Clip Classification with State-Space Video Models, ECCV 2022

2. Efficiently Modeling Long Sequences with Structured State Spaces, ICLR 2022
3. Hippo: Recurrent memory with optimal polynomial projections , NIPS 2020
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MOTIVATION

(a). Performance Impact with increasing number of input frames
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(b). Performance Impact with increasing masking ratio
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Performance gain/loss of ViS4mer on LVU dataset with different settings of input frames and random
masking ratio, where we conclude: (a). The performance is not substantially improved with increasing
number of input frames. (b) Random masking strategy cannot effectively reduce redundant tokens.
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METHOD
Selective Structured State-Spaces Sequence (S5) Model

momentum~ selective S4 (S5) model) MG is trained for a classif cation task on

e C ={Cq,C,, - Cs7},where ST is the total number of tokens.
i C:CST
v without gradient pass MG(xs,) = p(c|xs,) € [0,1], so that 2 p(clxs,) =1
didan Gasies —— with gradient pass c=C4
e generator
v | Peg... P g lcarned mask set We apply Gumbel SoftMax with Straight-Through tricks in the Mask
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Generator, and the gradient for each selected token can be written as:

exp(logp(c|xs,) + g(c)/p)

prediction N 3¢, 2o exp(logp(c’|xs,) + g(c)/p)
xs, = Sa (Xinput) Where S, = mS, + (1 — m)S,,
Mask = MG (xs,) m is the momentum,
Xinput = Xinpur @ Mask MG indicates Mask Generator,
=P (Ss (Xinpur)) Layer Norm is incorporated in Each Projection
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METHOD
Long-Short Masked Contrastive Learning In Batch B

random mask set ] fq: query encoder fi: key encoder

short clips: X¢ = {x3,x&,-- x5
long clips: X; = {xi,x?,--- x5}
Long and short clips can alternatively become queries and keys

fq — qu 1= (0L = sl

Given:q = fq (Rmask(xS' 77)): k = frx(Rmask (X, 1))

.T .
. . z _log exp(q' k'/p)
e exp(q' ki/p) + X ;. exp(qi kI /p)

random mask set 2

i

m is the momentum,
p IS the temperature hyperparameter
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RESUL
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RESULTS
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PT. Samples
TSN[57] | Kinetics-400 | 306K 7340
D-Sprv. [39] | HowTol00M | 136M 90.00

Viddmer [] | Minctics 008 | 458 it
Kinetics-600 | 495K 90.42

Kinetics-600_| 495K 90.81
prime video
v7

©)



©)



