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Overview
Task: Episodic Memory via Natural Language Queries (NLQ)

Egocentric video Query: Did I leave the refrigerator open?Response

Challenge: Limited training data (e.g., 11k queries over 130 hours of video)

Our idea: Augment NLQ training by learning to localize “narrations”

Example narration text: C rinses hand; C closes tap

Convert to NLQ
annotation

(video, query, response window)
Narrations-as-query data

Train NLQ models



Video credits: Ego4D

Query: Who did I interact with when I played with the dog for the second time in the living room?

Episodic Memory (EM)
Goal: Enable AR assistants for super-human memory

Long-form egocentric video Response
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Query: Who did I interact with when I played with the dog for the second time in the living room?

Episodic Memory (EM)
Goal: Enable AR assistants for super-human memory

Long-form egocentric video Response

Needle in a haystack problem: Long egocentric videos with short responses



Episodic Memory benchmark on Ego4D

Average clip duration: 8.2 mins
Average response duration: 10.5 sec 

Needle in a haystack problem

Key challenge: Limited annotation quantity and sparsity

Temporally localize responses to Natural language queries (NLQ)
Queries formulated based on templates NLQ dataset statistics



NLQ annotation procedure
Step 1: Preview long video

Step 2: Formulate creative question
Who did I interact with when I played with the dog for the second time in the living room?

• Template-based      • Unambiguous    • Precise response localization

Step 3: Annotate response (start, end) times

start end



NLQ annotation procedure
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Step 2: Formulate creative question
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• Template-based      • Unambiguous    • Precise response localization

Step 3: Annotate response (start, end) times

start end

Expensive and slow process limits scalability of annotations



NaQ: Narrations-as-Queries
Key insight: Augment NLQ training by learning to localize narrations
Timestamped play-by-play descriptions of camera-wearer’s activities.

ü Easier to annotate
§ Describe as you watch the video

ü Available on a large scale
§ 200x more narrations than NLQ annotations

ü Multi-purpose annotations
§ Not annotated specifically for NLQ
§ Applications across several benchmarks
§ Likely to be expanded over time



NaQ data-augmentation for scaling NLQ
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Simple-yet-effective approach: Augment NLQ dataset using NaQ and perform large-scale training
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Simple-yet-effective approach: Augment NLQ dataset using NaQ and perform large-scale training

Two-stage training strategy
Stage 1: Jointly train with NaQ + NLQ

Stage 2: Finetune with NLQ



Converting narrations à NLQ queries

C takes the ingredients out of the shelf

𝑉!

𝑇"

𝑡%

+𝛽𝑗/2𝛼−𝛽𝑗/2𝛼

Seed Temporal Window

𝑡& 𝑡'

. . . . . .

𝑡%

%𝑅"

Narration annotation: < 𝑉! , 𝑇" , 𝑡" > NaQ annotation for NLQ: < 𝑉! , 𝑇" , 𝑅" >

𝑉! : Video
𝑇" : Narration text
𝑡" : Time-stamp

𝑉! : Video
𝑇" : Narration text as query
𝑅" : (𝑡#, 𝑡$) response window

Contextual variable-length 
clip pairing [1]

[1] Lin, Kevin Qinghong, et al. "Egocentric video-language pretraining." Advances in Neural Information Processing Systems 2022

𝛽𝑗 = average separation between consecutive narrations in video j
𝛼 = average of 𝛽𝑗 over all videos



Converting narrations à NLQ queries
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Narration annotation: < 𝑉! , 𝑇" , 𝑡" > NaQ annotation for NLQ: < 𝑉! , 𝑇" , 𝑅" >

Contextual variable-length 
clip pairing [1]

[1] Lin, Kevin Qinghong, et al. "Egocentric video-language pretraining." Advances in Neural Information Processing Systems 2022

Temporal Response Jittering 
(ours)

𝑠 = randomly sampled scaling factor
𝛿! = random translation factor
Δ = half-width of original temporal window

Temporal response jittering: Accounts for noise in the seed temporal window

𝑉! : Video
𝑇" : Narration text
𝑡" : Time-stamp

𝑉! : Video
𝑇" : Narration text as query
𝑅" : (𝑡#, 𝑡$) response window

NaQ augmentation significantly expands the training data
• 11k à 860k queries
• 1k à 5k video clips



Experimental setup
Dataset
Ego4D NLQ dataset [1]

Evaluation metrics
Mean Recall @ k: Recall @ top k retrieval averaged over IoU=[0.3, 0.5]

Baselines
VSLNet [1,2]: Span-based localization approach to vision-language grounding 

EgoVLP [3]  : Enhances VSLNet with clip features learned through egocentric video-language pretraining

ReLER* [4]  : Improves over VSLNet architecture + uses video-level data augmentation

*we further improve the ReLER baseline using EgoVLP features 

[1] Grauman, Kristen, et al. "Ego4d: Around the world in 3,000 hours of egocentric video." CVPR 2022
[2] Zhang, Hao, et al. "Span-based Localizing Network for Natural Language Video Localization." ACL 2020
[3] Lin, Kevin Qinghong, et al. "Egocentric video-language pretraining." NeurIPS 2022
[4] Shao, Jiayi, Xiaohan Wang, and Yi Yang. "ReLER@ ZJU Submission to the Ego4D Moment Queries Challenge 2022." arXiV 2022



Experimental results
NaQ augmentation consistently and significantly enhances all baselines

w/o NaQ
w/ NaQ (ours)
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Our approach improves NLQ performance by up to 7% absolute mean recall
*we further improve the ReLER baseline using EgoVLP features 



Experimental results
NaQ sets the state-of-the-art results on the public Ego4D NLQ leaderboard

† Mean R@1 is the primary metric for deciding challenge winners
‡ NaQ++ combines winning entries from prior challenges and NaQ to achieve SoTA

Our approach improves NLQ SotA by 4.5% absolute mean recall @ 1



Experimental results
NaQ performance scales with the number of narrations used for training

# narrations used for NaQ augmentation
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Experimental results
NaQ facilitates zero-/few-shot NLQ
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Experimental results
NaQ facilitates zero-/few-shot NLQ

# NLQ annotations used for training

Baseline
Baseline

“Narrational queries” serves as a good proxy for NLQ
With only 25% NLQ data, we can outperform baselines that use the full NLQ dataset



Experimental results

0
2
4
6
8

10

High
-sh

ot

Mid-
sh

ot

Lo
w-sh

ot

VSLNet

5
7
9

11
13
15

High
-sh

ot

Mid-
sh

ot

Lo
w-sh

ot

EgoVLP

10
12
14
16
18
20

High
-sh

ot

Mid-
sh

ot

Lo
w-sh

ot

ReLER*

H
ig

h-
sh

ot

M
id

-s
ho

t

Lo
w

-s
ho

t

H
ig

h-
sh

ot

M
id

-s
ho

t

Lo
w

-s
ho

t

H
ig

h-
sh

ot

M
id

-s
ho

t

Lo
w

-s
ho

t

w/o NaQ w/ NaQ (ours)
*we further improve the ReLER baseline using EgoVLP features 



Experimental results

NaQ significantly improves responding to queries about long-tail objects
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Experimental results

NaQ significantly improves responding to queries about long-tail objects
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*we further improve the ReLER baseline using EgoVLP features 

“Narrational queries” provide extra training data for NLQ’s long-tail objects



Qualitative results
NaQ succeeds, while baseline fails, to reason about the long-tail object “soap”



Qualitative results
NaQ succeeds, while baseline fails, to reason about the long-tail object “sieve”



Conclusion
NaQ: Simple-yet-effective augmentation strategy for Episodic Memory NLQ

Improvements for multiple NLQ methods
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Interesting properties from using narrations-as-queries

1) Data scaling 2) Zero-/few-shot NLQ 3) Benefits long-tail objects
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