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• PatchSearch successfully defends against the backdoor attack
• It restores model performance to the clean level

Summary of PatchSearch
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• We focus on patch-based attacks. Why?
• More practical than image-wide perturbations

• Challenges
• No access to trusted or labeled data
• No knowledge about trigger appearance or location
• Huge datasets with very few poisons

Goal: Defend SSL against Backdoor Attacks
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Existing Solutions

[a] Chou, Edward, Florian Tramer, and Giancarlo Pellegrino. "Sentinet: Detecting localized universal attacks against deep learning systems." SPW 2020. 
[b] Doan, Bao Gia, Ehsan Abbasnejad, and Damith C. Ranasinghe. "Februus: Input purification defense against trojan attacks on deep neural network systems." Annual Computer 
Security Applications Conference. 2020.
[c] Borgnia, Eitan, et al. "Strong data augmentation sanitizes poisoning and backdoor attacks without an accuracy tradeoff." ICASSP 2021.
[d] Saha, Aniruddha, et al. "Backdoor attacks on self-supervised learning." CVPR 2022. 7

• Supervised Backdoor Attack Defenses
• Most defenses directly rely on labels

• Cannot be used in unlabeled settings
• Our ideas are similar to SentiNet [a] and Februus[b] (supervised test-time defenses)

• Some defenses do not rely on labels
• e.g., strong augmentation like CutMix [c]
• Can be used in unlabeled settings

• KD + Trusted Data Defense [d]
• Uses Knowledge Distillation (KD) on clean, unlabeled but trusted data
• Large amount of trusted data is required to retain accuracy



Our Solution: 3-Step Defense
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• Use above steps on entire dataset
• Rank dataset with poison score
• Remove top ranked images?

• Cannot detect all poisons
• Ranking entire dataset is expensive
• Only a few images are poisoned

• Solution
• Efficiently search for a few top poisons
• Build a classifier to detect similar images
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PatchSearch: Improving efficiency
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PatchSearch: Improving poison detection
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d. iterative search to find high-precision top-k triggers (for efficiency only)



PatchSearch: Improving poison detection
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Precision is not 100% but removing a few clean 
samples does not hurt overall model performance
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PatchSearch: How to choose 𝒘 blindly?

• 𝒘 is candidate trigger size
• The defender does not know true trigger size
• A tight 𝒘 around the trigger should result in 

few patches with relatively high scores
• Try out different 𝒘 and pick the one that 

results in maximum variance in scores
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Top-20 Acc is accuracy of PatchSearch and 
true trigger size is 50



• Results averaged across 10 
target categories
• Clean Data
• All models behave similarly

Results
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Results

• Results averaged across 10 
target categories
• Clean Data
• All models behave similarly

• Patched Data
• Backdoored models fail
• PatchSearch models improve
• Performance is restored to 

clean model levels
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Results: i-CutMix

• i-CutMix
• Augmentation for 

contrastive learning
• No labels needed
• Improves clean model
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• i-CutMix
• Augmentation for 

contrastive learning
• No labels needed
• Improves clean model
• Simple and effective defense

• Compared to PatchSearch
• Works implicitly
• Cannot detect poisons
• PatchSearch is a better 

defense
• Combination of both is best

Results: i-CutMix
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Results: KD Defense

• Comparison with KD Defense
• Proposed in [d]
• Uses unlabeled but trusted data
• PatchSearch has better accuracy 

and slightly higher FP

[d] Saha, Aniruddha, et al. "Backdoor attacks on self-supervised learning." CVPR 2022.
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Results: MAE
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• Comparison MAE
• MAE was shown to be robust to 

backdoor attacks in [d]
• However, MAE requires finetuning 

to be comparable to MoCo-v3
• Also, a properly defended MoCo-v3 

has better model performance

[d] Saha, Aniruddha, et al. "Backdoor attacks on self-supervised learning." CVPR 2022.



Conclusion

• PatchSearch
• Significantly mitigates the attack
• Finds highly influential patches
• Better than i-CutMix and KD Defense
• Combining with i-CutMix works best
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