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Unsupervised Semantic Segmentation (USS)
• Capturing pixel-level semantics from unlabeled data.
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Common approaches
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Common approaches
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1: Caron, Mathilde, et al. "Emerging properties in self-supervised vision transformers." ICCV 2021.
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Motivation

6

Task-agnostic features from
fixed pretrained model

Local consistency

• Adjacent patches are highly likely to have 
analogous semantics, which could be a 
crucial clue for semantic segmentation.

Self-supervised
Pretrained ViT

(DINO)

‘Elephant’

• However, relying solely on fixed pretrained 
model can be problematic since it is not 
specifically trained on segmentation task.

• Task-agnostic features from self-supervised 
pretrained model (DINO) could be 
converted to segmentation features.
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Approach
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Contrastive learning – pull positives & push negatives

• Due to absence of label, hidden positive 
patches (i.e., GHP) should be discovered.

• In addition to task-agnostic features, task-
specific features should be used to discover 
GHP.

Propagate loss gradient

• Subset of surrounding patches which has 
high probability of having the same 
semantics with the anchor.

• Loss gradient is propagated to the LHP 
considering their equivalency.



Global Hidden Positive (GHP)
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Stage 1. Build reference pool which stores prototypical patch features.

Stage 2. Discover GHP
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Global Hidden Positive (GHP)
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[Task-agnostic GHP] step 1-2 are carried out using patch features 𝑓𝑓𝑖𝑖.
[Task-specific GHP] step 1-2 are carried out using segmentation features 𝑠𝑠𝑖𝑖′.
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Local Hidden Positive (LHP)
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• Propagate the loss gradient to adjacent patches.
• Filter out the patches that have a lower attention score than the average attention score.
• Propagate the gradient in proportion to the corresponding attention score.
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Quantitative results
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Experiment on COCO-stuff dataset
Experiment on Cityscapes dataset

Experiment on Potsdam-3 dataset



Qualitative results
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• Experiment results on COCO-stuff dataset with DINO pretrained ViT-S backbone.



Further analysis
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Effect of Local Hidden Positive
Effect of task specific Global Hidden Positive
Comparison between ours and naïve implementation 
of unsupervised contrastive loss

Ablation study

• All anchors, reference points, and GHP sets have 
the same semantic labels.

Discovered GHP

• TA and TS denote task-agnostic and task-specific, 
respectively.

• GHP selection process distinguishes the body 
parts in a more fine-grained manner.



Contributions

• We propose a novel method to discover semantically similar pairs, called global hidden 
positives, to explicitly learn the semantic relationship among patches for unsupervised 
semantic segmentation.

• We utilize the task-specific features from a model-in-training and validate the 
effectiveness of progressive increase of their contribution.

• A gradient propagation to nearby similar patches, local hidden positives, is developed to 
learn locality which is the most obvious clue in segmentation.

• Our approach outperforms existing state-of-the-art methods across extensive experiments.
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