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The problem

Using temporal information is crucial to
understand videos. Yet, current models don’t
explicitly attempt to leverage temporal
regularities in datasets with long videos.

e Can we leverage the statistics in
temporal sequences of video datasets
to improve performance in
downstream tasks?

e Can we build richer embeddings with
this information?

e Where does this type of information
help the most?
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The idea

e We propose to build an Event Transition Matrix: a representation that captures
typical transition probabilities between actions in long video sequences

e We use this matrix as supervision in a new training protocol to generate strong
embeddings for video snippets

e We leverage these embeddings to improve action recognition and action
anticipation performance, especially on low complexity models.
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Key results

Our model-agnostic framework helps low complexity models

improve performance on action recognition and action

anticipation across 3 datasets.
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The Event Transition Matrix

e Computed by looking at all actions
happening after a given action,
weighted by a decay function

e Sguare matrix, not symmetric

e Several postprocessing steps:
o Dimensionality reduction
o Decay definition
o Normalization

HAPPENS FIRST
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How can we leverage this ETM?

e We propose to use the
rows and columns of the
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Building the ETM

Large matrix with sparse entries
Dimensionality reduction: do we
use the full matrix, or reducing the
number of actions considered help?
Decay: how to we weight the
contributions of actions happening
later in the video?

Distance metric: how do we
measure the distance between two
actions in a video?
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Types of distance metrics

Distance in frames/seconds
between actions

t0 t1 2 t3 t4

e Takes into account temporal
difference

e Can differentiate between end/start
(but which one to choose?)

e But dependent on length of actions

Distance as index difference in
ordinal sequence

e Only considers ordering

e Might be more adapted to
causality concepts

e Doesn’t depend on length of
actions



Testing ETM design choices

We test several design choices, including different decay functions, ETM sizes and distance metrics.

Size Decay Temp. Metric EReSENyIop-1 accurdcy)

Verb | Noun | Action
13k linear time 0.551 | 0.462 | 0.288
13k | exponential time 0.556 | 0.477 | 0.291
2.5k | exponential time 0.586 | 0.488 | 0.313
2.5k | nodecay - 0.581 | 0.480 | 0.305
29K linear index 0.601 | 0.493 | 0.319
[ 2.5k | exponential index 0.603 | 0.503 | 0.324 J




Datasets used

700 videos depicting cooking
actions, totalling 100 hours.

—— e~

3670 hours of video from 71
different participants.

—— e~

EGTEA Gaze+

m

10k segments annotated with 19
verbs, 51 nouns and 106 unique
actions.
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Tasks where we test our embeddings

;' Action Recognition 1 Action Anticipation

Receive a snippet, predict class Receive a collection of
label (here, verb and noun) | | snippets, predict next action




Experimental results - Action recognition

Cross Dataset

Cross Model

Results with MoViNet AO Results on EK100 across a wide variety of models

| 1 I

| Present i i Model w/o ETM  w/ ETM
! Dataset Model Vot Neun Keiod | MoviNet A0 [24] 36.8 402
| : i ! MoviNet A2 [24] 412 43.4
E EK100 [14] Baseline 64.8 474 36.8 i : X3D-XS [11] 35.5 38.1
| ETM(OUI‘S) 67.9 51.2 40.2 . i X3D-S [11] 40.5 )
i EGO4D Baseline 323 235 21..1 i E ConvNeXt-S 224 [31] 20.1 324
' LTA[I6] ETM(Ours) 329 242 220 | i LambdaResNet-50 [4] ~ 26.6 27.1
| EA Baisli 312 717 60.4 ! ! EfficientNet-BO [57] 253 26.3
: BT aseline ' ' ' E EfficientNet-B4 [11] 292 29.4
E Gaze+ [28] ETM(Ours) 834 729 62.5 : : AVTb [14] 304 207




Experimental results - Action Anticipation

__________________________________________________________________________________

Cross Dataset

_____________________________________

Cross Models

Results with MoViNet A0 Results on EK100

Basiliiie ETM (Ours) i ! Encoder w/o ETM  with ETM
Dataset Frozen Encoder? H ! MoViNet A0 [24] 3.0 9.1
Verb 1 Noun{  Action T Verb 1 Noun T  Action T i | MoViNet A2 [24] 102 10.8
Bt v 19.9 204 1.2 21.5 20.5 8.1 o X3D-XS [11] 63 7.4
EGO4D LTA v 171 16.6 10.3 18.1 17.8 114 i i ConvNeXt-S 224 [31] 4.1 5.0
18.2 175 1 Ly | 19.9 19.1 12.9 ! : EfficientNet BO [57] 72 8.0
A s v 42.1 37.6 28.9 434 38.9 313 || EfficientNet B4 [57) 9.4 10.1
43.5 38.5 30.3 46.5 40.7 34.1 | ! AVT-b [14] 13.4 13.5




Larger gains on smaller models!
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Performance on architecture families
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Baseline tests and ablations

Shuffle Rows

Row shuffling in ETM
matrix: Distribution of future
actions doesn’t match the
action index at a given row.

Shuffle Columns

Row shuffling in ETM
matrix: Distribution of past
actions doesn’t match the

action index at a given
column.

Full Shuffle

Full shuffling in ETM matrix:

no transition probability
estimation matches its
original action pair.

Co-occurrence

Co-occurrence frequency
between al and a2

Using a co-occurrence
matrix: cells correspond to
co-occurrence
frequencies instead of
transition probabilities



Baseline tests and ablations

Model Present MAE on MAE on
Verbt Noun? Action T Past | Future |
Baseline 64.8 47.4 36.8 - -
Full shuffle 64.1 47.2 36.3 4.117 4.012
Columns/rows shuffle ~ 64.7 47.6 36.7 3.254 3.101
Co-occurrence 65.3 49.0 379 1.211 1115
Only past vector 65.7 49.3 38.2 0.901 -
[ Only future vector 65.5 49.8 38.3 - 0.898
ETM (Ours) 67.9 51.2 40.2 0.882 0.859




Conclusions

e We introduce a new training regime that uses
external temporal regularities to boost video

understanding.

e Using our ETM as a training target enhances
action recognition and anticipation, particularly
on low representational power models.

e Our ETM protocol’s key benefits: flexibility,
simplicity, cost-effectiveness, and easy

integration.

Performance gain with ETM training (%)
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Thank you!

Leveraging Temporal Context in Low
Representational Power Regimes

Camilo Fosco, SouYoung Jin, Emilie Josephs, Aude Oliva

Project page:
camilofosco.com/etm website

Contact: camilolu@mit.edu
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