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Quick Preview
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Quick Preview

➢ We propose a novel critical minority relationship-aware method 

based on the Transformer architecture 

➢ We design several orientation tokens to explicitly encode the basic orientation regions

➢ A novel token guide multi-loss function is designed to guide the orientation tokens as they 

learn the desired regional similarities and relationships.
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Quick Preview

➢ Experiments show that our method achieves better performance 

compared with state-of-the-art methods.
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Quick Preview

➢ We conduct experiments to verify that the proposed orientation tokens can encode the facial 

part relationships and orientation characteristics in the basic regions 
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Introduction
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Introduction

Challenges:

➢ Extreme head pose randomness

➢ Serious occlusions
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Introduction

Three findings on intrinsic facial 

part relationships

➢ Neighborhood similarities

➢ Significant facial changes

➢ Critical minority relationships

Basic orientation region 

partitioning

Token learning methodology for 

HPE

➢ Divide the panoramic overview into basic regions 

based on intrinsic facial part relationships 

➢ Construct learnable orientation tokens according the 

Basic orientation region partitioning.

➢ Design a token guide multi-loss function to guide the 

orientation tokens learn the desired regional similarities 
and relationships
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Methodology
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Methodology

The TokenHPE model consists of four parts:

➢ Visual token construction.

➢ Orientation token construction.

➢ Transformer module and MLP head.

➢ Token learning-based prediction.
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Methodology

Visual Token Construction

An original input RBG image is transformed into visual tokens. This operation can be

expressed as:

𝑓: 𝑝 → 𝑣 ∈ ℝ𝑑,

where 𝑝 refers to a 1D patch vector and 𝑣 is a visual token with a dimension of 𝑑.

Given that spatial relationships are essential for accurate HPE, positional embedding, 𝑝𝑜𝑠, is

added to the visual tokens to reserve spatial relationships, which can be expressed as:

visual = 𝑣1 + 𝑝𝑜𝑠, 𝑣2 + 𝑝𝑜𝑠,⋯ , 𝑝𝑛 + 𝑝𝑜𝑠 ,

where 𝑛 is the number of patches. Then, we obtain n 1D vectors symbolically presented by 

[visual] tokens.
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Methodology

The TokenHPE model consists of four parts:

➢ Visual token construction.

➢ Orientation token construction.

➢ Transformer module and MLP head.

➢ Token learning-based prediction.
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Methodology

Orientation Token Construction

➢ Partition strategy I with nine basic orientation regions
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Methodology

Orientation Token Construction

➢ Partition strategy II with 11 basic orientation regions.
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Methodology

Orientation Token Construction
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We prepend 𝑘 learnable 𝑑 dimensional vectors to represent 𝑘 basic orientation regions.

These vectors are symbolized as [dir] tokens.
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Methodology

The TokenHPE model consists of four parts:

➢ Visual token construction.

➢ Orientation token construction.

➢ Transformer module and MLP head.

➢ Token learning-based prediction.
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Methodology

Transformer Blocks

➢ The [dir] tokens, together with the [visual] tokens, are accepted as the input of Transformer.

➢ After the last Transformer layer, the [dir] tokens are selected as the output, whereas the [visual] 

tokens are not used in the following steps. 

Processed orientation tokens
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Orientation tokens
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Methodology

MLP head

➢ First, a linear projection is applied to each [dir] token to obtain a 6D representation. Then the orientation 

matrix is obtained by the Gram–Schmidt process.
෠𝑅𝑖 = 𝐹𝐺𝑆 𝑊𝑋𝑖

𝑀 ,

➢ A set of intermediate rotation matrices 𝒞 = { ෠𝑅1, ෠𝑅2, ⋯ , ෠𝑅𝑘} can be generated by the transformation above. 

➢ In order to obtain the final prediction rotation matrix,𝒞 is concatenated and flattened into a vector ෨𝑅 as the 

input of the MLP head.
෠𝑅 = 𝐹𝐺𝑆 𝑊2 tanh 𝑊1 ∙ ෨𝑅 + 𝑏1 + 𝑏2 ,

MLP head

Processed orientation tokens

Final prediction rotation matrix

Predicted rotation matrices 

on each orientation 
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Methodology

The TokenHPE model consists of four parts:

➢ Visual token construction.

➢ Orientation token construction.

➢ Transformer module and MLP head.

➢ Token learning-based prediction.
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Methodology

Overall loss. The overall loss consists of the orientation token loss and the prediction loss. It can

be formulated as:
𝐿𝑜𝑠𝑠𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝛼𝐿𝑜𝑠𝑠𝑝𝑟𝑒𝑑 + 1 − 𝛼 𝐿𝑜𝑠𝑠𝑂𝑟𝑖 ,

where 𝛼 is a hyperparameter that balances prediction loss and orientation token loss.

Token Guide Multi-loss Function

MLP head

Predicted rotation matrix



25

Methodology

Token Guide Multi-loss Function

Geodesic distance loss: The prediction of the proposed model is a rotation matrix

representation denoted as ෠𝑅. Suppose that the groundtruth rotation matrix is R. The geodesic

distance is used as the loss between two 3D rotations. The geodesic distance loss is formulated

as:

𝐿𝑔 𝑅, ෠𝑅 = cos−1
𝑡𝑟 𝑅 ෠𝑅𝑇 − 1

2
.
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Methodology

Orientation token loss. Information can be encoded into the orientation tokens through the

orientation token loss.

𝐿𝑜𝑠𝑠𝑂𝑟𝑖 = ෍

𝑖=1

𝑘

𝕀(𝑅, 𝑖) ∙ 𝐿𝑔 𝑅, ෠𝑅𝑖 ,

where 𝑘 is the number of basic orientation regions, 𝑅 is the ground truth rotation matrix, ෠𝑅𝑖 is the

predicted rotation matrix, and 𝕀(𝑅, 𝑖) is an identity function that determines if a ground truth head

pose lies in the i-th basic region.

𝕀 𝑅, 𝑖 = ቊ
1, 𝑖𝑓 𝑅 𝑖𝑛 𝑟𝑒𝑔𝑖𝑜𝑛 𝑖,
0, 𝑖𝑓 𝑅 𝑛𝑜𝑡 𝑖𝑛 𝑟𝑒𝑔𝑖𝑜𝑛 𝑖.

Token Guide Multi-loss Function

MLP head

Groundtruth rotation matrix
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Methodology

Prediction loss. The predictions from the orientation tokens are aggregated to form the final

prediction of our model. This is optimized by the prediction loss, which is formulated as:

𝐿𝑜𝑠𝑠𝑝𝑟𝑒𝑑 = 𝐿𝑔 𝑅, ෠𝑅 ,

where ෠𝑅 is the model prediction.

Token Guide Multi-loss Function

MLP head

Predicted rotation matrix Groundtruth rotation matrix
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Methodology

Visual token construction

Orientation token construction

Transformer module and MLP head

Token learning-based prediction
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Experimental results and Visualization
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Experimental results

➢ BIWI dataset includes 15,678 images of 20 individuals (6 females and 14 males, 4 individuals are
recorded twice). The head pose range covers about ±75° yaw and ±60° pitch.

➢AFLW2000 dataset contains 2000 images and is typically used for the evaluation of 3D facial landmark

detection models. The head poses are diverse and often difficult to be detected by a CNN-based face

detector.

➢300W-LP dataset adopts the proposed face profiling to generate about 61k samples across large poses.

The dataset is usually employed as the training set for HPE.

Datasets
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Experimental results

Evaluation metrics

Evaluation metric 1: Mean absolute errors of Euler angles (MAE). MAE is a standard metric for HPE.

Assume a given set of ground truth Euler angles 𝛼, 𝛽, 𝛾 of an image, in which 𝛼, 𝛽, and 𝛾 represent pitch,

yaw, and roll angle, respectively. The predicted set of Euler angles from a model is denoted as ො𝛼, መ𝛽, ො𝛾 .

𝑀𝐴𝐸 =
1

3
𝛼 − ො𝛼 + 𝛽 − መ𝛽 + 𝛾 − ො𝛾 .

Evaluation metric 2: Mean absolute errors of vectors (MAEV). MAEV is based on rotation matrix

representation. For an image, suppose that the ground truth rotation matrix is 𝑅 = [𝑟1, 𝑟2, 𝑟3], where 𝑟𝑖 is a 3D

vector that indicates a spatial direction. The predicted rotation matrix from a model is denoted as ෠𝑅 =
[ Ƹ𝑟1, Ƹ𝑟2, Ƹ𝑟3].

𝑀𝐴𝐸𝑉 =
1

3
෍

𝑖=1

3

𝑟𝑖 − Ƹ𝑟𝑖 1 .
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Experimental results

Evaluation protocol 1: All models are trained on 300-LP dataset and tested on AFLW2000 dataset and

BIWI dataset, respectively.

Evaluation protocol 2: All models are trained and tested on BIWI dataset with a 7:3 train-test split.
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Visualization

We visualize the attention of head pose predictions to confirm that our model can learn critical minority 

facial part relationships. 

Heatmap visualization
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Visualization

➢ The neighbor orientation tokens are highly similar.

➢ The orientation tokens that represent symmetric facial regions have higher similarity scores than the

tokens that represent the other unrelated regions.

Similarity matrix of orientation tokens
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Visualization

Region information learnt by orientation tokens

➢ In the first few layers, each orientation token pays attention to almost all the other ones to construct

the global context.

➢ As the network deepens, each orientation token tends to rely on its neighbor region tokens and

spatial symmetric tokens.

➢ At the deeper Transformer blocks, the attention score is higher between neighbor regions (near

diagonal) and symmetric regions.
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Visualization

Orientation token learning during training
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Orientation token learning process in model training

➢ As the training epochs increase, general information is learned gradually by the orientation tokens.

The orientation relationships can be observed in the later training epochs.

➢ The similarity scores are higher in the neighbored regions and spatial symmetric regions.
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Visualization

B
lo

ck
2

H
ea

tm
ap

 v
is

u
al

iz
at

io
n

 i
n

 d
if

fe
re

n
t 
T

ra
n

sf
o

rm
er

 b
lo

ck
s

B
lo

ck
4

B
lo

ck
6

B
lo

ck
8

B
lo

ck
1

0
B

lo
ck

1
2

Heatmap visualization in the inference stage
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Conclusion
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Conclusion

➢ We introduced three findings on head images, namely, neighborhood similarities, significant facial changes, 

and critical minority relationships. 

➢ To leverage these properties of head images, we utilized the Transformer architecture to learn the facial part 

relationships and designed several orientation tokens according to panoramic overview partitions. 

➢ In addition, the success of TokenHPE demonstrates the importance of orientation cues in the head pose 

estimation task. This initial work shed light on further research on token learning methods for HPE.
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Thank you for listening!
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