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Findings:
» Neighborhood similarities

» Significant facial changes

» Critical minority relationships
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» We propose a novel critical minority relationship-aware method
based on the Transformer architecture
» \We design several orientation tokens to explicitly encode the basic orientation regions
» A novel token guide multi-loss function is designed to guide the orientation tokens as they
learn the desired regional similarities and relationships.
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» Experiments show that our method achieves better performance
compared with state-of-the-art methods.

Table 1. Mean absolute errors of Euler angles and vectors on the AFLW2000 dataset. All methods are trained on the 300W-LP dataset.
! These methods take an RGB image as the input and can be trained free from extra annotations, such as landmarks.

Methods Extra annotation free! : Hilier Ehgle eturs{) S Vort eor
Pitch  Yaw Roll MAE | Left Down Front MAEV
3DDFA [ 1] X 27.05 471 2843 2008 | 30.57 39.05 18.52 29.38
Dlib [ 1] X 11.25 850 2283 14.19 | 26,56 2851 1431 2313
FAN [ ] X 123 636 8.71 9.12 - - - -
EVA-GCN [ V] X 3.34 446 411 4.64 - - - -
SynergyNet [ ] X 409 342 255 3.35 - - - -
img2pose [ !] X 503 343 328 3.91 - - - -
HopeNet [ /] v F1Z2 531 6.13 6.20 7.07 5.98 7.50 6.85
FSA-Net [ 1] v 6.34 496 478 5.36 6.75 6.22 7.35 6.77
LwPosr [ 1] v 6.38 480 4.88 5.35 - - - -
Quatnet [ ] v 362 3857 392 4.50 B - - -
TriNet [ '] v 577 420 4.04 4.67 5.78 3.67 6.52 5.99
TokenHPE-v1 (ours) v 573 453 429 4.85 6.16 5.21 6.97 6.11
TokenHPE-v2 (ours) v 554 436 408 4.66 | 6.01 5 6.82 5.98
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» We conduct experiments to verify that the proposed orientation tokens can encode the facial
part relationships and orientation characteristics in the basic regions
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Challenges:

» Extreme head pose randomness

» Serious occlusions
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Introduction

Findings:
Intrinsic facial part relationships:

» Neighborhood similarities

» Significant facial changes
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» Critical minority relationships
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Introduction

Findings:

Intrinsic facial part relationships:

» Neighborhood similarities

» Significant facial changes

» Critical minority relationships
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Findings:
Intrinsic facial part relationships:

» Neighborhood similarities
» Significant facial changes

» Critical minority relationships
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» Neighborhood similarities

Three findings on intrinsic facial o _
part relationships » Significant facial changes

» Critical minority relationships

Basic orientation region » Divide the panoramic overview into basic regions
partitioning based on intrinsic facial part relationships

» Construct learnable orientation tokens according the

Token learning methodology for Basic orientation region partitioning.
HPE

» Design a token guide multi-loss function to guide the
orientation tokens learn the desired regional similarities

and relationships
12
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The TokenHPE model consists of four parts:

VANCOUVER, CANADA

> Visual token construction.

Predicted rotation matrix

> Orientation token construction.

LoSSpreq s
LOSSove'rall l t
>  Transformer module and MLP head. = (1 — @)L0sSor; + aL0SSprea
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Visual Token Construction

Visual tokens
1

Feature [... ..]
- Extractor - Feature ®_I

maps -... K ..

An original input RBG image is transformed into visual tokens. This operation can be
expressed as:
f:p - veERY
where p refers to a 1D patch vector and v is a visual token with a dimension of d.

Given that spatial relationships are essential for accurate HPE, positional embedding, pos, is
added to the visual tokens to reserve spatial relationships, which can be expressed as:
[visual] = {v; + pos, v, + pos, -+, p,, + pos},
where n is the number of patches. Then, we obtain n 1D vectors symbolically presented by
[visual] tokens.

15



The TokenHPE model consists of four parts:
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Methodology

Visual token construction.
Orientation token construction.
Transformer module and MLP head.

Token learning-based prediction.
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Predicted rotation matrix

LoSSpreq
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Methodology

Orientation Token Construction

» Partition strategy | with nine basic orientation regions

3
e
o

go b 0’3 ‘® {3|:® S

\Y
w
=)

(0]

—30°~30°

< —30°

@@ 2 IIVD
PDDDIDOD

-’ 8BAIIID

O D D:DIDD
9993 YD
' 9993 HD
XX ETL L 1o

VPPV
v 0@PDIV

AN

—60°~60° 17



Methodology

Orientation Token Construction

» Partition strategy Il with 11 basic orientation regions.
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Orientation Token Construction

We prepend k learnable d dimensional vectors to represent k basic orientation regions.
These vectors are symbolized as [dir] tokens.

Nine orientation tokens
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Methodology

The TokenHPE model consists of four parts:

Visual token construction.

Orientation token construction.

Transformer module and MLP head.

Token learning-based prediction.
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Transformer Blocks
> The [dir] tokens, together with the [visual] tokens, are accepted as the input of Transformer.

> After the last Transformer layer, the [dir] tokens are selected as the output, whereas the [visual]
tokens are not used in the following steps.

Processed orientation tokens [. Bl - B .

[ t )
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Transformer block
r ' t \
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MLP head

» First, a linear projection is applied to each [dir] token to obtain a 6D representation. Then the orientation
matrix is obtained by the Gram—-Schmidt process.
Bi ~ FGS(KVXiM)»
» A set of intermediate rotation matrices C = {R,R,, :-, R} can be generated by the transformation above.

> In order to obtain the final prediction rotation matrix,C is concatenated and flattened into a vector R as the
input of the MLP head.
R\ = FGs(Wz(tanh(Wl y E + bl)) + bz),

Final prediction rotation matrix

1
MLP head
1

. . . r
Predicted rotation matrices 1 . . -
. . 1deE s eee
on each orientation JE S S S
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Processed orientation tokens 29
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The TokenHPE model consists of four parts:

Visual token construction.

Orientation token construction.

Transformer module and MLP head.

Token learning-based prediction.

Methodology
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Token Guide Multi-loss Function

Overall loss. The overall loss consists of the orientation token loss and the prediction loss. It can
be formulated as:
LosSgyerqn = aLoSSpreq + (1 — a)Losspy,

where «a is a hyperparameter that balances prediction loss and orientation token loss.

Predicted rotation matrix
LosSpreq

LOSSoverall 1

1
= (1 — a)Lossyy; + aLosspreq  (CNLEEEET
)
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Token Guide Multi-loss Function

Geodesic distance loss: The prediction of the proposed model is a rotation matrix

representation denoted as R. Suppose that the groundtruth rotation matrix is R. The geodesic
distance is used as the loss between two 3D rotations. The geodesic distance loss is formulated

as:
. RRT) -1
L, (R, R) = cos™ ! <tr( ) )

2
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Token Guide Multi-loss Function

Orientation token loss. Information can be encoded into the orientation tokens through the
orientation token loss.

k
Lossgr; = Z I(R,i) - Ly(R R;),
i=1

where k is the number of basic orientation regions, R is the ground truth rotation matrix, R; is the
predicted rotation matrix, and (R, i) is an identity function that determines if a ground truth head
pose lies in the i-th basic region.
~ |1, if Rinregioni,
IR, 1) = {O, if Rnotinregioni.

LOSSoverall 1 t

= (1 — a)Lossyy + aLossyreq (VLD
L

Groundtruth rotation matrix
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Token Guide Multi-loss Function

Prediction loss. The predictions from the orientation tokens are aggregated to form the final
prediction of our model. This is optimized by the prediction loss, which is formulated as:
Lossyreq = Ly (R, ﬁ),

where R is the model prediction.

Predicted rotation matrix Groundtruth rotation matrix
LosSpreq

< >

LOSSoverall 1

1
= (1 — a)Lossyy; + aLosSpreq (NVABS T
1
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Visual token construction ]

4

Orientation token construction

Transformer module and MLP head

[ Token learning-based prediction ]
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Experimental results and Visualization
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Datasets

> BIWI dataset includes 15,678 images of 20 individuals (6 females and 14 males, 4 individuals are
recorded twice). The head pose range covers about +75° yaw and +60° pitch.

»AFLW2000 dataset contains 2000 images and is typically used for the evaluation of 3D facial landmark
detection models. The head poses are diverse and often difficult to be detected by a CNN-based face

detector.

»300W-LP dataset adopts the proposed face profiling to generate about 61k samples across large poses.
The dataset is usually employed as the training set for HPE.

30
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Evaluation metrics

Evaluation metric 1: Mean absolute errors of Euler angles (MAE). MAE is a standard metric for HPE.
Assume a given set of ground truth Euler angles {a, ,y} of an image, in which «, 8,and y represent pitch,
yaw, and roll angle, respectively. The predicted set of Euler angles from a model is denoted as {&B?}

1 A A A
MAE:§(|a—a|+|,[>’—,B|+|y—y|).

Evaluation metric 2: Mean absolute errors of vectors (MAEV). MAEV is based on rotation matrix
representation. For an image, suppose that the ground truth rotation matrix is R = [ry, 1y, 13], Wwhere r; is a 3D
vector that indicates a spatial direction. The predicted rotation matrix from a model is denoted as R =

[f'lr f'ZI f'S]

3
1
MAEV = §Zun — 2l
i=1

31
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Evaluation protocol 1: All models are trained on 300-LP dataset and tested on AFLW2000 dataset and
BIWI dataset, respectively.

Evaluation protocol 2: All models are trained and tested on BIWI dataset with a 7:3 train-test split.

ADIE 1. cdll dDsC ce : ;i cr angiles dnd vectors c P datasel. s € ds are trained c e = ddatdscl.
Table 1. Mean absolute errors of Euler angles and vectors on the AFLW2000 dataset. All methods are trained on the 300W-LP dataset
' These methods take an RGB image as the input and can be trained free from extra annotations, such as landmarks.

Methods Extra annotation free’ . Eierungleanmis(7) Yeelororrors
Pitch Yaw Roll MAE | Left Down Front MAEV
3DDFA [ 1] X 27.05 471 2843 2008 | 30.57 3905 1852  20.38
Dlib [ 1] X 11.25 850 2283 14.19 | 26.56 2851 14.31 23.13
FAN [] X 123, 6386 &7 0.12 - - - -
EVA-GCN [ V] X 534 446 411 4.64 - - - -
SynergyNet [ +] X 409 342 255 3.35 - - -
img2pose | !] X 503 343 3.28 3.91 - - - -
HopeNet | 1] v 12 33] 6.13 6.20 7.07 5.98 7.50 6.85
FSA-Net |1 ] v 6.34 496 478 5.36 6.75 6.22 7.35 6.77
LwPosr [ 11] v 6.38 480 488 5.35 - - -
Quatnet [ ] v 562 397 3.92 4.50 < 2 . -
TriNet | '] v 57T 420 4.04 4.67 5.78 5.67 6.52 5.99
TokenHPE-v1 (ours) v 573 453 4.29 4.85 6.16 a.21 6.97 6.11
TokenHPE-v2 (ours) 4 554 436 408  4.66 6.01 5.10 6.82 5.98

32



JUNE 18-22, 2023

Visualization CVPRA

VANCOUVER, CANADA

Heatmap visualization
We visualize the attention of head pose predictions to confirm that our model can learn critical minority

facial part relationships.
TokenHPE (ours)

e

HopeNet _ 6DRepNet
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Similarity matrix of orientation tokens

» The neighbor orientation tokens are highly similar.

» The orientation tokens that represent symmetric facial regions have higher similarity scores than the
tokens that represent the other unrelated regions.
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Region information learnt by orientation tokens

> In the first few layers, each orientation token pays attention to almost all the other ones to construct
the global context.

» As the network deepens, each orientation token tends to rely on its neighbor region tokens and
spatial symmetric tokens.

> At the deeper Transformer blocks, the attention score is higher between neighbor regions (near
diagonal) and symmetric regions.
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Orientation token learning during training

> As the training epochs increase, general information is learned gradually by the orientation tokens.
The orientation relationships can be observed in the later training epochs.

» The similarity scores are higher in the neighbored regions and spatial symmetric regions.

Orientation token learning process in model training
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Heatmap visualization in the inference stage
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» We introduced three findings on head images, namely, neighborhood similarities, significant facial changes,
and critical minority relationships.

» To leverage these properties of head images, we utilized the Transformer architecture to learn the facial part
relationships and designed several orientation tokens according to panoramic overview partitions.

» In addition, the success of TokenHPE demonstrates the importance of orientation cues in the head pose
estimation task. This initial work shed light on further research on token learning methods for HPE.
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