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Abstract

Query-Dependent DETR for Video Moment Retrieval & Highlight Detection

Given a Football Video

rid 2 - 3 Barca (2017) Messi grabs dramatic late win in #EICIasicoll

1:41:01 / 1:43:17

A person wants to see the moment
A man scored the winning goal.”

Query-Dependent Video Representation for Moment Retrieval and Highlight Detection

In previous works, video and text query are forwarded to self-attention layers
without the consideration of importance of similarity between per-frame and query.
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Introduction

Video Moment Retrieval & Highlight Detection

FULL MATCH: Real Madrid 2 - 3 Barga (2017) Messi grabs dramatic late win in #EIClasico!!

L Sl

L _FCB

¥ r - o ~
el \d rk,/f

Laligg

e 'sg}Sm‘nandcg 3 S
v P (e e ClYY

——
A ESHM AHAS| ot 7|

v

> Ml ¢ 1:41:01/1:4317

« Video sources are often very long that it is hard to capture the desired moments.
« We need an automatic tool to assist finding the desired moments.
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Introduction

Moment Retrieval

Given the text description for desired moments : "A girl speaking from her car ",
Moment Retrieval is to clip the desired moments.

Desired Moments

Highlightness
Score

Highlight Detection

Supervised with the human annotated highlightness scores,
Highlight Detection is to learn the frame-wise highlightness in the human perspective.
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Background

» Text query, the description for desired moments, are overlooked while extracting video representation.

(viki2s
Moment- Detr UMT
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Due to modality gap, video features are more likely to Due to self-attention modules before query insertion,
be utilized in attention layers than textual information. each frame feature may no longer depict frame-

specific information but video-descriptive features.
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Overview

Query-Dependent DETR

Query:

“A woman in plaid ...”
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Approach — Cross-Attention Transformer Encoder

Cross-Attention Transformer Encoder (CATE)

- Previous works (e.g. Moment-DETR) struggle to learn to relation between video and text query

- Adopting cross-attention on very first layer of transformer encoder

- Cross-Attention Transformer Encoder ensures the consistency contribution of text on video representation

Self-Attention « Interaction between
4 4 video and text rep.

« Text condition may not
be ensured on every clip

“A kid watch the
screen in the laptop.”

Video input Text query
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(iross-Attention .

Video input

“A kid watch the
screen in the laptop.”

Text query

Simplex Interaction
between video and text rep.

Consistent text condition
Is ensured on every clip



Approach — Learning from Negative Relationship

Introducing Negative-relation Learning

- Previous highlight-detection focus on learning the video-query relationship only with matched pairs

- Since video frames share similar appearances and similarities to a query will not be highly distinguishable, the
involvement of textual information may not be high

- By penalizing the irrelevant (negative) video-query pairs, the model is encouraged to learn the general relationship
between video and text queries
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“Man 1in pink top sits on a boat.”
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Approach — Input-Adaptive Saliency Predictor

Input-Adaptive Saliency Predictor

- Typical saliency predictor estimates the saliency score based-on single (or multiple) FC layers

- This identical criteria for the saliency prediction of every video-query pair neglects diverse nature of video-text pairs

- Introducing input-adaptive saliency predictor, which determine the saliency criteria depending on input video-text pair

Saliency token
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encoder

Typical Saliency predictor
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Experimental Results — Quantitative Results

Experiment on QVHighlights dataset (Moment Retrieval & Highlight Detection)

MR HD
Method Src mAP >= Very Good
@0.5 @(.7 @0.5 @(0.75 Avg. mAP HIT@]1
BeautyThumb [47] \Y% - - - - - 14.36 20.88
DVSE [55] \Y - - - - - 18.75 21.79
MCN [1] Vv 11.41 2.72 24.94 8.22 10.67 - -
CAL [ 7] Vv 25.49 11.54 23.40 7.65 9.89 - -
XML [29] Vv 41.83 30.35 44.63 31.73 32.14 34.49 55.25
XML+ [29] Vv 46.69 33.46 47.89 34.67 34.90 35.38 55.06
Moment-DETR [ ] V 52.89;1;2_3 33.02;&1_7 54.82:1:1_? 29.40;&1_7 30.73;&1_4 35.691{].5 55.60;&1_5
QD-DETR (Ours) Vv 6240, , 4498.,., 6252, . 3988.,. 3986.,., 3894. 6, 6240, ,
UMT [36] V+A 56.23 41.18 53.38 37.01 36.12 38.18 59.99
QD-DETR (Ours) V+A | 63.06+, , 45.10+,. 63.04.,, 4010+,, 40.19:,, 39.04., ., 62874,
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Experimental Results — Ablation study

Analysis on the proposed components

Ablation study on proposed components

MR HD

CATE | Neg. Pair | ST | DAM R1 mAP >= Very Good

@0.5 @0.7 Avg. mAP HIT@l

(a) 52.89  33.02 30.73 35.69  55.60
(b) v 56.16 38.71 34.07 37.14 58.34
(c) v 58.69 39.83 3540 39.02 62.81
(d) v 5548 37.00 32.84 37.48  58.59
(e) v 53.19 3591 3333 35.68  55.56
(H) v v 57.72 4235 38.03 3656  57.44
(g) v v 59.57 4212 36.76 38.64 61.62
(h) v v 60.00 4097 35.89 39.06 62.88
(1) v v v 60.32 4239 3693 3921 62.76
() v v v v 62.68 46.66 41.22 39.13  63.03

Query-Dependent Video Representation for Moment Retrieval and Highlight Detection

ST denotes saliency token
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Experimental Results — Qualitative Result

Qualitative results — Example MR/HD prediction for given pos/semi-pos/neg pair
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Positive Query: Man and woman have a conversation in the back of a blue car. s Positive Saliency
Semi-positive Query: Asian woman gives a monologue in a parkedcar,. =0 =mmeme—- Semi-positive Saliency
Negative Query: Mom helps son clib a stone wall. - « = Negative Saliency
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Contribution

» \We found that the previous MR/HD methods only uses queries to play an insignificant role; they may not be
capable of detecting negative queries and video-query relevance

» To tackle this issue, we introduce Query-Dependent DETR (QD-DETR) with 3 major components
1. Cross-Attention Transformer Encoder to explicitly inject the context of text query into video
representation.
2. Negative-relation learning for encouraging the model to estimate precise accordance between video-
query pairs
3. Input-adaptive saliency predictor which adaptively defines the criterion of saliency scores for the
given video-query pairs

» Our overall approach is verified to be superior to existing state-of-the-art methods with extensive experiments
and showed that increasing the involvement of text query is essential

Query-Dependent Video Representation for Moment Retrieval and Highlight Detection



Thank you
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