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Texture bias in vision models

(a) Texture image (b) Content image (c) Texture-shape cue conflict
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10.3% indri 17.3% grey fox 26.4% indri
8.2% black swan 3.3% Siamese cat 9.6% black swan

Image credits: Imagenet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness. (ICLR 2019)



ELeaS enhance shape sensitivity in vision models

Distinguishing the augmented image entails differentiating the relevant edges representing the
overall object shape from the irrelevant edges derived from the shuffled image.




Deep networks v.s. Human behaviour

e Deep networks prioritize "local" features over global features, differing from
human behavior.

e |mage datasets like Imagenet may not accurately reflect cognitive concepts
and real-world knowledge.

e Inductive biases are necessary in under-determined learning problems to
guide the learning process.

Jacob, Georgin, et al. "Qualitative similarities and differences in visual object representations between brains and deep networks." Nature
communications 12.1 (2021): 1872.



Related work

e Geirhos et al. proposed a data augmentation method that replaced an
image's texture with a painting's texture through stylization.

e Later work expanded on this approach by replacing textures from other
objects, not just paintings.

Geirhos, Robert et al. “lmageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness.”
ArXiv abs/1811.12231 (2018): n. pag.



Related work

e These approaches discourage relying too heavily on textural features in the
learned model.

e However, they do not explicitly encourage or incentivize shape recognition.




Proposed augmentation: ELea$S

e EleaS (Edge Learning for Shape sensitivity), aims to enhance shape
sensitivity in vision models.

e The two images are combined using a randomly sampled mixing weight.

is =Akt+ (1 —)A)*xs

Im 1 Im 1-Edgemap (S) Im 2 Im 2-Shuffled (f) ELeaS (i)




Proposed training strategy

e Each minibatch consists of a combination of natural images from set | and

augmented images from set B.

e The training process minimizes the cross-entropy loss on both natural image

samples and the augmentations.

e To control the induced shape sensitivity, a weighted mixture of cross-entropy

loss is computed on the two image sets.

L(IaBayIayB) ZU*CE(LZ/I)

(1 o 77) * CE(vaB)



Shape sensitivity v.s. Robustness
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"Shape or texture: Understanding discriminative features in cnns." arXiv preprint arXiv:2101.11604 (2021).



Improved shape-sensitivity
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Experimental results

Model Method  IN-A(1) IN-R(f) IN-C(}) IN-Sketch(t) IN-1K(})
Vanilla 2.0 36.2 75.0 23.5 76.4
Resnet50 | TSD [21] 33 40.8 67.5 28.3 76.9
ELEAS 5.4 41.7 58.5 29.7 77.1
Vanilla 5.6 39.3 69.8 27.1 78.0
Resnet101 | TSD [21] 8.8 443 62.2 3213 78.8
ELEAS 13.4 44.4 53.5 32.4 78.6
Vanilla 59 41.3 67.2 28.4 78.6
Resnet152 | TSD [21] 12.5 45.5 58.9 33.3 79.7
ELEAS 15.4 45.7 53.0 34.7 79.0
Vanilla 16.6 36.1 55.1 33.2 74.6
ViT-S VanillaFT ~ 27.6 43.8 44.3 34.7 80.6
TSD [21] 27.4 44.4 422 324 76.4
ELEAS 28.5 45.0 41.5 35.3 81.1




Experimental results

Model Method  IN-A(1) IN-R(f) IN-C(|) IN-Sketch(t) IN-1K(1)
Vanilla 2.0 36.2 75.0 235 76.4
Resnet50 | TSD [21] 33, ] 408 675 , .| 283 76.9
ELEAS 54 | 417 585 | 297 77.1
Vanilla 56 393 69.8 27.1 78.0
Resnet101 | TSD [21] 88, |43 ©22 | 323 78.8
ELEAS 13.47%°| 44.4 535 | 324 78.6
Vanilla 59 41.3 67.2 28.4 78.6
Resnet152 | TSD [21] 25 455 339 333 79.7
ELEAS 1547291 457 53.0 27| 347 79.0
Vanilla 16.6 36.1 55.1 332 74.6
ViT-S VanillaFT ~ 27.6 43.8 443 347 80.6
TSD[21]  [274 | 444 27 | 324 76.4
ELEAS 285" | 45.0 415 | 353 81.1




Segmentation and Detection performance

e Only backbone model is changed.
e The models are evaluated on the COCO-Val2017 dataset.

Object Detection

Instance Segmentation

Model mAP AP@050 AP@0.75 | mAP AP@050 AP@0.75
Vanilla 39.87 60.21 4333 36.35 57.39 38.79
TSD @ 378D 58.98 41.29 33.87 55.41 35.85
ELEA 41.65+1.78| 61.83 45.43 37.63+1.25| 58.99 40.33

Improved shape-sensitivity leads to improved Object detection and

segmentation performance for free.




Conclusion

/

ELeaS training leads to
improved shape
sensitivity.

/
Enhanced shape
sensitivity improves
segmentation and
detection performance.

/
Improved shape
sensitivity leads to
improved model
robustness.




