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Are existing explanations human-understandable?

Attribution-based explanation
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Visual counterfactual explanation
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—> Conventional visual XAl methods
@ Can: Provide important regions
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source: Das, Arun, and Paul Rad. "Opportunities and challenges in explainable artificial intelligence (xai): A survey." arXiv preprint arXiv:2006.17371 (2020).
Goyal, Yash, et al. "Counterfactual visual explanations." International Conference on Machine Learning. PMLR, 2019.




Towards human understandable explanation:
Concept-based explanation

Concept!
The units of human-understandable high-level semantics

Typically defined by words such as “stripe”, “white”, ...

@® ® Intermediate representation

Concept Activation Vector (CAV) Y AVgripe

Positive dataset: samples that exhibit ¢

Negative dataset: samples that exclude ¢

CAV = A vector normal to the linear hyperplane Positive dataset Negative dataset

Example: “Stripe” concept

() 1.Diverging CAVs & 2.Unintended entanglement



|. Diverging CAVs
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source: Images were collected from google image search



2. Unintended entanglement
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source: Images were collected from google image search



Counterfactual TEXtual EXplanation (CounTEX)



Vision (V) and Language (L) were Separated

Image model embedding space Language model embedding space
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CLIP enables V&L Joint Embedding Space
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CLIP enables textual guidance on images

CLIP embedding space

-~ “a photo of object”
=~~~ “a photo of red object”
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CLIP enables textual guidance on images

CLIP embedding space

Concept-perturbed
Image embedding
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But, the target classifier is not CLIP

How can we leverage the well-performing CLIP latent space?

CLIP embedding space

Image
Classifier

12



Counterfactul TEXtual EXplanation (CounTEX)
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L. f = [fvottom» ftop]

fbottom (x)

source:
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Counterfactul TEXtual EXplanation (CounTEX)
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fbottom (x)

2.e = Iproj (fbottom (x))'

where gpr0;(+) is a projection function

Q

CLIP latent space
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Counterfactul TEXtual EXplanation (CounTEX)

B

fbottom (x)

Proiecti | B
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‘. -0 2.e = YIproj (fbottom(x));
'6— +W' v ey where gpr0;(+) is a projection function
e 3.ep=e+tw:-V

CLIP latent space
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Counterfactul TEXtual EXplanation (CounTEX)

- foottom (%) Jinv(ep)
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Inverse
Proj ectlon
,,_>O 2.e = Iproj (fbottom(x)):

'. ’ e where .(+) is a projection function
6- tw.y P Yproj proj
e 3. e, =e+w-V

4.y = ftop (ginv(ep))
CLIP latent space
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Research Questio

ns

How can we obtain concept direction bank V?

How can we obtain weight w!?

How can we implement projection and inverse projection?

fbottom (x) ginv(ep)
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Inverse
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j ! (.gpFOJ) projection (giny)

Y =0 e
b tw -V

®

CLIP latent space
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Research Questions

How can we obtain concept direction bank V?

fbottom (x) ginv(ep)

Yt

Inverse

Projection j
j ! (gprOJ) projection (giny)
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®

CLIP latent space
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|. Prepare concept direction bank

Build concept direction vector bank V

Given a predefined concept library C,
Generate prompt pair for concept ¢

)«

[tsrc, tt,,g] [“a photo of object’,

= MinMaxNormalize (CLIP.oy (£S5

a photo of ¢ object”] Part

— CLIPtext(tgrg))

Category |

Prompt template

Color
Texture
Scene
Material

Object

"A
"A
"A
"A
"A
"A

photo
photo
photo
photo
photo
photo

of {} object™
{} object™

of
of
of
of
of

object
object
object
object

on {}"

made of {}"
containing {}"
along with {}"

V = {v,|c € C}, where C is a predefined concept set

Cc

“a photo of object”

“a photo of c object”
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Research Questions

How can we obtain weight w!?

fbottom (x) ginv(ep)

Yt

Inverse

Projection j
j ! (g pro]) projection (giny)

L f— O ®p
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®

CLIP latent space

20



2. Optimize w until the prediction changes to y;

Optimize w with the objective function below
minL = Leg + @+ Lyeg + - Lig
w

Lcg = CrOSSEntFOPY(ftop (ginv (ep))r yt)

Change the prediction to the target class by minimizing the cross-entropy loss
Lreg
Elastic net regularization: regularize concept importance to be |) sparse and 2) unique minimum
2
Lig = ||ep — e||

Counterfactual approach requires the minimal modification

|dentity loss to constrain the minimal perturbation
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Research Questions

How can we implement projection and inverse projection?

fbottom (x) ginv(ep)

Inverse

Projection j
j ! (gpFOJ) projection (giny)
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CLIP latent space
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3. Prepare projector and inverse projector

; \
Lproj = ||.gproj (fbottom(x)) — CLIP(X)” Liny = ||ginv(CLIP(X)) — fbottom(x)”2
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3. Prepare projector and inverse projector

Additionally finetune with cycle consistency loss

Leinetune = Lproj + Liny + Lcycle

2

Lcycle — Hfbottom(x) — Yinv (gproj (fbottom(x)))|

Target model latent space

CLIP latent space
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Experimental setup

Target model

CLIP+linear models
Trained on ImageNet/Animal with Attributes2 (AWA2)/Caltech-UCSD Birds-200-201 | (CUB)
Shares the embedding space with CLIP = Projection is not needed

ResNet|8 models
Trained on ImageNet/AWA2/CUB
Does not share the embedding space with CLIP = Projection is needed

Concept library C
Reduce BRODEN for ImageNet-trained models
AWA2, CUB for AWA2-trained and CUB-trained models, respectively
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Qualitative evaluation

Original input  Target class Counterfactual Original input  Target class Counterfactual
(a) “Tench” “Goldfish” (b) “Lion” “Leopard”
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" brown [ ] ” shape: duck-like ]
S campsite () -3 back color: green ]
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source:
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Qualitative Comparison between Ours and CCE

Spurious correlation in dataset collection of CCE led to inaccurate interpretation

Original Input Target class Counterfactual

source:
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Debugging misclassification cases

(@) Misclassifiedas _  Correct answer (b) Background-
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water e oy
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fields L | T
1 0 1 Prediction
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(c) Examples of “Rhinoceros™ Examples of “Hippopotamus”

source:
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Quantitative Evaluation

Lack of ground truth explanation
Especially for conceptual explanation

Some previous works often skip quantitative evaluation

Repurpose existing datasets with class-wise attributes
AWA2 dataset

85 binary attributes are provided for 50 animal classes

CUB dataset

312 continuous attributes are provided for 200 bird classes
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Examples of Ground Truth Attributes

AWA?2 attribute labels

CUB attribute labels

Class-wise binary attributes
Zebra|1]10]0]1]11]0]0]O0
Polarbear [0 | 1|1 ]|1]0]0|0]|1
L QA x2S

X0 \ C
LS (O F

forehead_color black black black
breast pattem salld salid sl bd
breast_color whita | white | white
head pattem plain | capped plain
back_color white white black
wing_color grey white
o lag_color erange | orange | orange
| | siza mediom | lbrpe | medium
bill_shape needle | dagger | dagger
wing_shape pointed | tapered long
primary_color white white wehine




Quantitative Evaluation Protocol

Since our method adopts counterfactual approach,

A, : Attributes of the original class, A, : Attributes of the target class
Only the difference between two attributes is our interest

Consider only if the two elements of the attributes are different

Agr = [Ay,li] — Ay _[i] foriinrange (len(Ayo)) if Ay, [i] # Ay, [i]]

Class-wise binary attributes Ground truth explanation

yo:Zebra | 1|0 |01} 1}J0[0}O0 Al 1101010

zebra

y,: Polar bear | 0 | 1 0|0]1 A O|1]|1]0]|1
2

1 0 polar bear
~ x2 & D S S
L & O ELLL L@ Agr| 111 ]1]1
RS QSL 4§> < <§3 ~§b GT

v

S

Report AUROC(AGT, I)



Quantitative Comparison w/ Baseline-CCE

26% improved AUROC compared to Baseline-CCE

Target model Dataset Library | CCE Ours
curims S50 G o o
s G i o
oo B G o
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Thank You!



