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Introduction

A man that is standing in the dirt with a bat.
? A batter at a baseball game swinging his bat.

. A baseball player is in the middle of his swing as

‘A/ the catcher is ready to catch the ball.

Goal of cross-modal retrieval:

Learning embedding functions from image / text to a shared embedding space,
where matching image-caption pairs are closer than non matching pairs in that space.
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Existing Challenges

|| Results:
t1: A man that is standing in the dirt with a bat
I g ; I

||t2 A batter at a baseball game swmgmg hlS bat i "

“One-to-many mapping” challenges in cross-modal retrieval tasks:

e An image can potentially be matched with a number of different captions.



Existing Challenges
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I A batter at a
I baseball game™
I swingin‘é his bat.

| Results: - U;

“One-to-many mapping” challenges in cross-modal retrieval tasks:

® A caption also semantically match more than one picture.



I Probabilistic embedding

e FEach embedding is a Gaussian distribution, instead of a point vector.

e (an handle “ambiguous” inputs.

(a) Point embedding. (b) Stochastic embedding.

ICLR 19, Modeling Uncertainty with Hedged Instance Embedding



I Motivation

e A hyperedge can connect more than three nodes



I Our Method

ResNe

c1:A surfer is on his
board in the middle of
an ocean spraying wave.

c4:a young person
riding skis on a
snowy field
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Evaluation Metrics:

Plausible Match R-Precision (PMRP[2]):

A group of planes sitting on a runway, in the day.

] An outside view of airplanes and buildings at
a an airport.

I
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I 'ﬂ‘ a = : e at the terminals.
i : m - : 'ﬂ‘ m The view of runway from behind the windows of airport.

Query image “Plausible” image

The various airplanes are waiting for repairs

“Plausible” captions

CVPR 21, Probabilistic Embeddings for Cross-Modal Retrieval
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Experimental results

COCO Caption results
1K Test 5K Test

Methods Dimension Image-to-text  Text-to-image Image-to-text Text-to-image

PMRP R@1 PMRP R@l1 PMRP R@l PMRP R@I]
VSE++ (BMVC’18) [¢] 1024 - 64.60 - 52.00 - 41.30 - 30.30
PVSE M=1 (CVPR’19) [34] 1024 40.30 66.70 4190 53.50 2930 41.70 30.10 30.60
PVSE M=2 (CVPR’19) [34] 1024 x 2 4280 69.20 43.70 5520 31.80 4520 32.00 32.40
VSRN (ICCV’19) [16] 2048 4120 7620 4240 6280 29.70 53.00 2990 40.50

VSRN +AOQ (ECCV’20) [4] 2048 x2 4470 7750 45.60 63.50 33.00 55.10 3350 41.10
PCME 1 only (CVPR’21) [6] 1024 45.00 68.00 4590 5460 34.00 43.50 3430 31.70

PCME (CVPR’21) [6] 1024 x 2 45.10 68.80 46.00 54.60 34.10 4420 3440 31.90
PCME (CVPR’21)f 1024 x 2 45.10 6590 46.00 5330 34.10 41.70 3440 31.20
P2RM (ACM MM’22) [41] 1024 x 2 4590 66.60 4642 5422 3552 42.12 35.11 31.50
MSRM (Ours) 1024 x 2 4643 68.85 4735 56.12 35.62 4432 3581 33.40

e Our methods shows the best PMRP scores among recent state-of-the-art COCO
retrieval methods

e Although recent methods achieved impressive R@]1 scores, their PMRP scores are
much lower than us.
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Retrieval Examples with our method and

Query Our MSRM PCME
1. A couple of men are loading a truck with glass. ~ ( =0]1. A couple of men are loading a truck with glass. ¢=0
2. Many men work together to put objects in a truck( — 0 |2- Aman bending into the back of a truck on a street. c=l
v 3. A man bending into the back of a truck on a streetc —1 3. Aman reaches in the back of a truck. =0
@ | 4. A couple are approaching a man sitting down 4. A couple are approaching a man sitting down outside of a
outside of a small shop. (=3 small shop gr=a
5. A man reaches in the back of a truck . ¢=0|5 Aman leaning over the back of a truck in front of buildingsg =3
6. A truck with a bunch of people in back of it. ¢ =1 |6. Some people trying to load an item onto a motorcycle. ¢=3

Two children play
while eatingin a
restaurant.

=2
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Contribution

e We introduce an interpretable method named Multilateral Semantic Relations
Modeling to better resolve the one-to-many correspondence for image-text retrieval.

e We propose the Semantic Distribution Learning module to extract the true semantics
of a query based on Mahalanobis distance, which can infer more accurate multiple
matches.

e We leverage the hyperedge convolution to model the high-order correlations between
a Gaussian query and candidates for further improving the accuracy.
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