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Problem : Image restoration for multiple degradations

* Image restoration for real-world environments is a challenging problem since it must deal with
unknown multiple degradations.
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Related works : Independent modes (IM)

« To handle known multiple degradations is to develop a single network architecture and train it
with different degradation datasets to generate independent modes (IM) for various degradations.
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large network and/or heavy
computation.

Deblurring model
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Rain Deraining model Restored

S. W. Zamir, et al. “Multi-stage progressive image restoration,” in CVPR, 2021.

S. W. Zamir, et al. “Restormer: Efficient transformer for high-resolution image restoration,” in CVPR, 2022.
C. Mou, et al. “Deep generalized unfolding networks for image restoration,” in CVPR, 2022.

L. Chen, et al. “Simple baselines for image restoration,” ECCV, 2022.

X. Chu, et al. “Improving image restoration by revisiting global information aggregation,” ECCV, 2022.
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Related works : All-in-one image restoration for multiple degradations
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W. Chen, et al. “Learning multiple adverse weather removal via two-stage knowledge learning and multicontrastive regularization: Toward a unified model,” in CVPR, 2022
B. Xiao, etal. “All-in-one image restoration for unknown corruption,” in CVPR, 2022. , R. Li, et al. “All in one bad weather removal using architectural search,” in CVPR, 2021
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Related works : Filter attribution integrated gradients (FAIG)

« L. Xie et al. proposed FAIG that can identify discriminative filters of specific degradation.

" The baseline network (8,;) is a pure SR
Y network that cannot remove any degradations.

Baseline | (W%
model (6,3) Y

Can not remove blur

. The target network (0;,) is a re-trained network

Target " / _
. that can deal with complex degradations

model (6,) =

Can remove blur

FAIG accumulate gradients along a straight-line path. i denote the index of the network kernel.

AMa) = abgy + (1 — a)@m

it =0 Z [,

FAIG : L. Xie, et al. “Finding discriminative filters for specific degradations in blind super-resolution,” NIPS, 2021

FAIG: F;(6ia,0u, 1) ~
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Motivation : UM and IM differ only in a few network kernels.

SRCNN Visualization of the first convolutional

Degradation ~ Unified model Restored
Images Images

Unified Model Deraining Model

I a (Bum) (Oum t0 Orqin)
Rain Deraining Restored u
Image model Image 001 .. 075
Different map Corr. map
C. Dong, et al. “Image super-resolution using deep convolutional networks,” IEEE TPAMI, 2015. 0um — Orainl Corr(Oym, Orain)
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Method : Step 1 - Unified model

* First, we train a unified model for all degradations.

CNN on unified model
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Method : Step 2 - FAIG for multiple degradations

 We leveraged the FAIG [57] in (5) to locate discriminative filters for specific degradation.

Baseline The baseline network (0,,,) is the unified
model 1 i " model trained for all degradations.
(Bum)
) Unified model i
Target The target network (84) for the specific
model degradation (d) is constructed by fine-tuning
(0rain) the baseline network (0,,,,)-

Deraining model

* We create k target models and compute FAIG F;(0,4, 0,,,,,, x) for each degradation d = 1, ..., k and all kernels i.
* Foreach d, the kernels of top g% FAIG scores are selected where g ranges from 1 to 5.
* Selected kernel indices are used to generate masks (M) with 1 for selected kernels and 0 otherwise
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Method: Step 2 - Constructing FAIG for multiple degradations

« Second, we leveraged the FAIG to locate discriminative filter mask (My4) for multiple degradations.
* The ratio of the mask (M) was set to 3% for each task through comparison studies.
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Method : Step 3 - Degradation classifier

« Third, the degradation classifier (DC) aims to classify the degradation type from the input image.
* We propose a degradation classifier (DC) to adaptively change the network parameters in the CNN with ADS

CNN on unified model
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Method: Step 4 - CNN with adaptive discriminative filters

. CNN with Adaptive Discriminative filters for ~ * ©OUr proposed CNN'}‘;‘DS is defined as follows:

Specific degradation (CNN-ADS) - ; ~ i :
;ds — Q;m + ch 93 * Mé
d=1

1

I
: ? _ X * O,m isaunified model
| ed,1 Ml
l : .. . :
: 2 . Cx)— * 64 is an additional kernel for specific degradation.
R M! : : :
T i « ¢4 ls the predicted degradation type.
|
|
| 4 E (X} * My Is a mask for filters in the network such that 1
| Bax M is assigned only to the filter indices whose FAIG-
: @ SD values are the top g% scores for a degradation
: type d.
DBm Bk
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Method: Step 4 - CNN with adaptive discriminative filters

 We propose a CNN with ADS (Adaptive Discriminative filters for Specific degradation), implemented by the
masks (Mg) that are constructed using our FAIG-SD and the predicted degradation probability (C) as illustrated.

: - Adaptive discriminative filters for
. CNN with ADS CNN on unified model II:II specific degradation
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Experiments dataset

Rain-Blur-Noise dataset Rain-Snow-Haze dataset
(Different characteristics) (Similar characteristics)
* The noise image physical model: « We evaluated our proposed method with the Rain-
t 2 Snow-Haze datasets similar to the environment of
Lnoise = " T €, €~ N(O’ O¢ I) W. T. Chen, et al.

t
* The blur image physical model: Trainsnow,haze = 1 © (25 + 5) + (1 -T) © A

Lblur — mgt * K

* The rain image physical model:

Teain =1 O (28 +S)+(1-T)0 A

W. T. Chen, et al. “Learning multiple adverse weather removal via two-stage knowledge learning and multi-contrastive
regularization: Toward a unified model,” in CVPR, 2022
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Comparison studies for selected filter locations

Performance comparisons among different filter location selection for M in our CNN with AS :
Random selection method (Ran), Encoder selection method (En), |6, — 04 | Selection
method (|8|) and our proposed FAIG-SD method (Ours) on Rain-Noise-Blur dataset.

Added Added 5% filters Added 3% filters Added 1% filters Base
Task Ran En 6] Ours | Ran En 6| Ours | Ran En 19| Ours | UM
Rain 3223 3245 3260 32.80 | 32.19 3244 3252 3274 | 32.15 3235 3237 3256 | 32.12
Blur 26.81 26.85 2722 27.70 | 26.74 26.85 27.06 27.57 | 26.65 26.77 26.85 27.28 | 26.61

Noise | 31.04 31.25 31.32 3146 | 31.01 31.24 31.26 31.42 | 3098 31.17 31.14 31.30 | 30.97
Avg. 30.03 30.18 30.38 30.65 | 2998 30.17 30.28 30.58 | 29.93 30.10 30.12 30.38 | 29.90

Par. 33.0M=28.TM x1.15 31.3M=28.TM x1.09 20.6 M=28.TM x1.03 28.7
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Comparisons among all-in-one on Rain-Blur-Noise

Quantitative performance comparison (Airnet and Chen) on Rain-Blur-Noise test dataset in
PSNR (dB), parameter size (Par in Million). MSBDN-Large (M-L) has increased number of
network parameters by 5.9 M.

Network M Rain  Blur Noise | Avg. | Par.

NAFNet IM | 33.03 3030 31.59 | 31.64 | 51.3
MSBDN IM | 33.02 28.79 31.52 | 31.11 | 83.1

NAFNet UM | 3299 2946 3139 | 31.28 | 17.1
MSBDN UM | 32.12 26.61 30.97 | 29.90 | 28.7
MSBDN-L | UM | 3225 26.81 31.00 | 30.02 | 34.6
MSB-Chen 32.14 2591 30.85 | 29.63 | 28.7
Airnet 3249 26.84 31.41 | 29.13 | 7.6
NAFNet | Ours | 33.15 29.99 31.53 | 31.56 | 18.9
MSBDN | Ours | 32.74 27.56 3142 | 30.58 | 31.6

W. T. Chen, et al. “Learning multiple adverse weather removal via two-stage knowledge learning and multi-contrastive regularization: Toward a unified model,” in CVPR, 2022
B. Li et al. “All-in-one image restoration for unknown corruption,” in CVPR, 2022
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Comparisons among all-in-one on Rain-Snow-Hazy

Quantitative performance comparison (Airnet and Chen ) on the Rain-Snow-Hazy test
dataset in PSNR (dB), parameter size (Param in Million). “Chen, Ours” is a method to
combine ours with Chen.

Network M Rain  Blur Noise | Avg. | Par.
MSBDN | IM | 3481 3142 31.67 | 32.63 | 86.1

MSBDN | UM | 30.77 30.56 30.45 | 30.59 | 28.7
MSBDN-Chen | 31.52 32.28 30.54 | 31.45 | 28.7
Airnet 30.08 2691 26.11 | 27.70 | 7.6
MSBDN | Ours | 32.07 3241 30.38 | 31.62 | 31.6

MSBDN | P | 3180 33.83 30.56 | 32.09 | 31.6
Ours

W. T. Chen, et al. “Learning multiple adverse weather removal via two-stage knowledge learning and multi-contrastive regularization: Toward a unified model,” in CVPR, 2022
B. Li et al. “All-in-one image restoration for unknown corruption,” in CVPR, 2022
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Comparisons among all-in-one on Rain-Blur-Noise

Clean image Rain image UM Chen AirNet Ours

1.0

0.8

0.6

0.4
( i i i
G ‘

0.2

0.0

I “/
!
’/ 7 ////// i
Rain image (A) UM (4) Chen (4) AirNet (4) Ours (A)

119117711y '111111 1

(%) SEOUL NATIONAL UNIVERSITY Intelligent Computational imaging Lab (ICL)




Comparisons among all-in-one on Rain-Blur-Noise

|
\ l "'n.
e

e ;;"‘jf"
MLJ iéz"u

sl

AirNet

i :
i B
A \
‘ “. ,‘ i~
L8 (M4 "w)
| 'Ia
b}
e UL
Wil

Blur image (4) UM (4) Chen (4) AirNet (A) Ours (4)

%‘g@ SEOUL NATIONAL UNIVERSITY Intelligent Computational imaging Lab (ICL)



Comparisons among all-in-one on Rain-Blur-Noise
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Comparisons among all-in-one on Rain-Snow-Hazy

Clean Haze UM Chen AirNet Ours
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Visualization of representations

Visualization of representations for degradation types such as similar combinations of
degradation, Rain-Blur-Noise and different combination of degradation, Rain-Snow-Haze.

Rain-Blur-Noise dataset Rain-Snow-Haze dataset
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Comparisons among all-in-one on Real Rain and Blur

Qualitative results evaluated on the real rain (top) and real blur (bottom) for Ours (well on
both), Chen [12] (well on one) and AirNet [26] (well on the other) trained on synthetic data.

Rain

o - - - -
Real Chen [12] Airnet [25] Ours

W. T. Chen, et al. “Learning multiple adverse weather removal via two-stage knowledge learning and multi-contrastive regularization: Toward a unified model,” in CVPR, 2022
B. Li et al. “All-in-one image restoration for unknown corruption,” in CVPR, 2022
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Summary

[1We proposed all-in-one image restoration method for unknown multiple
degradations with adaptive discriminant filters for specific degradations using our
FAIG-SD and degradation classifier.

[10ur proposed method with explicit parameter disentanglement for multiple
degradations outperform state-of-the-art all-in-one image restoration methods on
both Rain-Snow-Haze and Rain-Noise-Blur.
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Thank You!
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