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Related Work: HandOccNet[1]

[1] HandOccNet: Occlusion-Robust 3D Hand Mesh Estimation Network, CVPR, 2022. 

[2] MobRecon: Mobile-Friendly Hand Mesh Reconstruction from Monocular Image, CVPR, 2022. 

Related Work: MobRecon[2]
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Occlusion formulation is implicit.

Predict occlusion probabilities as guidance.

Ill-posed issue still exists when occlusion is severe.

Multi-frame input can provide extra information.
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Our framework includes three stages:

• The dual-branch encoder extracts general and task-specific features;

• The hand mesh reconstruction module focuses on constructing hand meshes at canonical poses; and

• The hand orientation regression module predicts the global hand orientation using the hand-level visibility.
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H2ONet: Hand-Occlusion-and-Orientation-aware Network 



Methods J-PE J-AUC V-PE V-AUC F@5 F@15

Pose2Mesh 12.5 - 12.7 - 44.1 90.9

I2L-MeshNet 11.2 - 13.9 - 40.9 93.2

ObMan 11.1 - 11.0 77.8 46.0 93.0

HO3D 10.7 78.8 10.6 79.0 50.6 94.2

METRO 10.4 - 11.1 - 48.4 94.6

Liu et al. 10.2 79.7 9.8 80.4 52.9 95.0

I2UV-HandNet 9.9 80.4 10.1 79.9 50.0 94.3

Tse et al. - - 10.9 - 48.5 94.3

HandOccNet 9.1 81.9 9.0 81.9 56.1 96.2

MobRecon 9.2 - 9.4 - 53.8 95.7

MobRecon 9.4 81.3 9.5 81.0 53.3 95.5

Our H2ONet 55.4 96.0

Hasson et al. 11.4 77.3 11.4 77.3 42.8 93.2

Hasson et al. - - 14.7 - 39.0 88.0

Liu et al. 9.8 - 9.4 81.2 53.0 95.7

Our H2ONet

Methods J-PE J-AUC V-PE V-AUC F@5 F@15

METRO 15.2 - - - - -

Spurr et al. 17.3 69.8 - - - -

Liu et al. 15.3 - - - - -

HandOccNet 14.0 74.8 13.1 76.6 51.5 92.4

MobRecon 14.2 73.7 13.1 76.1 50.8 92.1

Our H2ONet 51.3 92.1

Our H2ONet

Methods PA-J-PE PA-J-AUC PA-V-PE PA-V-AUC PA-F@5 PA-F@15

METRO 7.0 - - - - -

Spurr et al. 6.8 86.4 - - - -

Liu et al. 6.6 - - - - -

HandOccNet 5.8 88.4 5.5 89.0 78.0 99.0

MobRecon 6.4 87.3 5.6 88.9 78.5 98.8

Our H2ONet

Our H2ONet

Experimental Results: Quantitative Comparison
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Table 2. Results on the HO3D-v2 dataset (after PA).

Note: bold and underlined denote 1st and 2nd performance, respectively.
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Table 1. Results on the Dex-YCB dataset.
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Experimental Results: Qualitative Comparison
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Dex-YCB HO3D-v2
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HandOccNet[1]

Related Work

[1] HandOccNet: Occlusion-Robust 3D Hand Mesh Estimation Network, CVPR, 2022.



[1] HandOccNet: Occlusion-Robust 3D Hand Mesh Estimation Network, CVPR, 2022. 7

Occlusion formulation is implicit.

Predict occlusion probabilities as guidance.

Ill-posed issue still exists when occlusion is severe.

Multi-frame input can provide extra information.
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Related Work: HandOccNet[1]
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Occlusion formulation is implicit.

Predict occlusion probabilities as guidance.

Ill-posed issue still exists when occlusion is severe.

Multi-frame input can provide extra information.
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[1] HandOccNet: Occlusion-Robust 3D Hand Mesh Estimation Network, CVPR, 2022.



[2] MobRecon: Mobile-Friendly Hand Mesh Reconstruction from Monocular Image, CVPR, 2022. 

MobRecon[2]

Related Work
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Run fast but no specific design for self and 
object caused occlusions.

Add modules and strategies to deal with 
occlusion while preserving fast speed.

MobRecon[2]

[2] MobRecon: Mobile-Friendly Hand Mesh Reconstruction from Monocular Image, CVPR, 2022. 
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Occlusion formulation is implicit.

Predict occlusion probabilities as guidance.

Ill-posed issue still exists when occlusion is severe.

Multi-frame input can provide extra information.
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Motivation

Hand shape and orientation are disentangled.

3D vertices regression enables better alignment with input.

3D Vertices

MANO coefficients

58 dim
Global orientation

3 dimMANO shape

10 dim

MANO pose

48 dim

Fingers’ orientations

45 dim

Hand shape at canonical pose

Hand orientation

Disentangle hand shape and orientation 

when regressing 3D vertices.
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Ill-posed issue occurs when occlusion is dominated in the input.

Rigid-motion assumption:

• Too near, useful information is limited;

• Too far, assumption is broken.

Single-frame input Segmentation Mask

Multi-frame input helps to alleviate this issue.
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Our Method



(iv) Masked hand

Note: Two vertices per finger for clarity.
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(i) Input (ii) Rendered hand

(iii) Input hand seg. (v) Projected vertices
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Occlusion Probabilities Prediction
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Our framework includes three stages:

• The dual-branch encoder extracts general and task-specific features;

• The hand mesh reconstruction module focuses on constructing hand meshes at canonical poses; and

• The hand orientation regression module predicts the global hand orientation using the hand-level visibility.
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H2ONet: Hand-Occlusion-and-Orientation-aware Network 



Multi-frame Feature Fusion
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Experimental Results



Evaluation on the Dex-YCB dataset
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Table 1. Results comparison after PA. Table 2. Results comparison before PA.

Experimental Results

Methods PA-J-PE PA-J-AUC PA-V-PE PA-V-AUC PA-F@5 PA-F@15

METRO 7.0 - - - - -

Spurr et al. 6.8 86.4 - - - -

Liu et al. 6.6 - - - - -

HandOccNet 5.8 88.4 5.5 89.0 78.0 99.0

MobRecon 6.4 87.3 5.6 88.9 78.5 98.8

Our H2ONet

Our H2ONet 5.3 89.4 5.2 89.6 80.5 99.3

5.7 88.9 5.5 89.1 80.1 99.0

Methods J-PE J-AUC V-PE V-AUC F@5 F@15

METRO 15.2 - - - - -

Spurr et al. 17.3 69.8 - - - -

Liu et al. 15.3 - - - - -

HandOccNet 14.0 74.8 13.1 76.6 51.5 92.4

MobRecon 14.2 73.7 13.1 76.1 50.8 92.1

Our H2ONet 51.3 92.1

Our H2ONet 13.7 74.8 12.7 76.6 52.1 92.3

14.0 74.6 13.0 76.2



Methods PA-J-PE PA-J-AUC PA-V-PE PA-V-AUC PA-F@5 PA-F@15

Pose2Mesh 12.5 - 12.7 - 44.1 90.9

I2L-MeshNet 11.2 - 13.9 - 40.9 93.2

ObMan 11.1 - 11.0 77.8 46.0 93.0

HO3D 10.7 78.8 10.6 79.0 50.6 94.2

METRO 10.4 - 11.1 - 48.4 94.6

Liu et al. 10.2 79.7 9.8 80.4 52.9 95.0

I2UV-HandNet 9.9 80.4 10.1 79.9 50.0 94.3

Tse et al. - - 10.9 - 48.5 94.3

HandOccNet 9.1 81.9 9.0 81.9 56.1 96.2

MobRecon 9.2 - 9.4 - 53.8 95.7

MobRecon 9.4 81.3 9.5 81.0 53.3 95.5

Our H2ONet 55.4 96.0

Hasson et al. 11.4 77.3 11.4 77.3 42.8 93.2

Hasson et al. - - 14.7 - 39.0 88.0

Liu et al. 9.8 - 9.4 81.2 53.0 95.7

Our H2ONet

Quantitative Comparison
Evaluation on the HO3D-v2 dataset Efficiency v.s. Effectiveness
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Table 3. Results comparison after PA.
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Dex-YCB HO3D-v2
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Qualitative Comparison
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More Results
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Thank you for watching!
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