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Typical pipeline for learning optical flow
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Static FlyingChairs Typical pipeline

Pretrain on large-scale synthetic datasets
Issue: exist a domain gap between the synthetic and target data



AutoFlow: learning a training set for optical flow
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AutoFlow (A)

AutoFlow pipeline

Learn a training set to optimize performance on a target dataset

Sun et al. AutoFlow: Learning a Better Training Set for Optical Flow. CVPR 2021



Issues: rely on ground truth from target domain
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(Supervised) AutoFlow



Can we remove the reliance on ground truth?
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Self-supervised AutoFlow
Self-supervised learning + learning to render



Self-supervised learning for optical flow

Sintel Clean [ |

Sintel Final [ ]

KITTI2015 [ ]

EPE EPE EPE EPE (noc) ER in %
Method train test train test train train train test
FlowNet2-ft [ ] (1.45) 4,16 (2.0 5.74 (2.30) — (8.61) 11.48
24 PWC-Net-ft[ ] (1.70)  3.86 (221) 5.3 (2.16) - (9.80)  9.60
g%m [T (1.08)  [3.74] (T.77)_{4.26] (T.18) - - 847
S5 VON-t[ ] (1.66) 281 (2.24)  4.40 (1.16) - (4.10)  6.30
RAFT-ft [ ] 0.76) 194 (1.22)  3.18 (0.63) - (1.5)  5.10
E'E FlowNet2 [ | 2.02 3.96 3.14 6.02 9.84 - 28.20 -
£E PWC-Net[ ] 2.55 - 3.93 - 10.35 - 33.67 -
8= VCN[ ] 221 - 3.62 - 8.36 - 25.10 -
A% RAFT[ ] 1.43 - 2.71 - 5.04 _ 17.4 _
EPIFlow [ ] 3.94 7.00 5.08 8.51 5.56 2.56 - 16.95
DDFlow [ ] (292}  6.18 {398} 740 [5.72] [2.73] - 14.29
_  SelFlow[ ]™P [2.88] [6.56] (387} {657} [4.84] [2.40] - 14.19
$  UnsupSimFlow [ ] {2.86} 592 (357} 692 [5.19] _ - [13.38]
£ ARFlow[ ]®™P {273} {4.49} {3.69} {5.67} [2.85] - - [11.79]
= UFlow [ ] 3.01 5.21 4.09 6.50 2.84 1.96 9.39 11.13
z SMUREFE-test (ours) 1.99 — 2.80 — 2.01 142 6.72 —
= | SMURF-train (ours) {171}  3.15 {258} 4.8 (200} {141} {642}  6.83




Are self-supervised losses related to ground truth errors?

——>» Model (¢pg) —»

AEPE

Self-supervised loss

A set of hyperparameters Train a model Compute self-supervised loss
of AutoFlow and AEPE on target dataset



Are self-supervised losses related to ground truth errors?

Correlation: 0.78

Strong correlation: self-supervised losses can be search metric for AutoFlow
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Photometric loss

Correlation: 0.80
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Smoothness loss

Correlation: 0.70
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Distillation loss

Correlation: 0.83
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L = Ephoto + L‘-)smo-:?-th[-"smorc:fth + wdistillﬁ'distill



AutoFlow
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A" = argmin  (¢g(A))
AEA

e Search for an optimal set of hyperparameters A so that the optical flow
network ¢g(A) trained on the dataset rendered with A minimize a search metric
() on the target dataset



(Supervised) AutoFlow
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e Learn a training dataset to optimize the performance in the target domain with
labels by minimizing the ground truth error



Self-supervised AutoFlow

H +——» Model (¢pg)

Self-AutoFlow (1) | | . Target data w/o GT

Qs-ar(P0(A)) = Lohoto + Wsmooth Lsmooth + Waistin Ldistill

e Learn atraining dataset to approximately optimize the performance in the
unlabeled target domain by minimizing the self-supervision metric



Self-supervised AutoFlow
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Metric: photometric loss Metric: smoothness loss Metric: distillation loss Metric: total loss

- Combination of three self-supervised signals acts as effective search metric
- Mixing data generated by top-3 hyperparameter sets increases robustness



Comparison of (self-)supervised pre-training approaches

Sintel Clean  Sintel Final KITTI

Dataset and Method (AEPE ) (AEPE |) (AEPE )

Supervised

RAFT Chairs [43] 2.27 3.76 7.63
AF Sintel (3.2M) [40] 1.74 2.41 4.18
AF-mix Sintel (3.2M) 1.85 2.53 3.92
AF KITTI (0.8M) [41] 2.09 2.82 4.33
AF-mix KITTI (0.8M) 1.87 2.77 3.86
Self-supervised

SMUREF Chairs [38] 2.19 3.35 7.94
S-AF Sintel (3.2M) 1.83 2.59 5.22
S-AF KITTI (0.2M) 2.20 3.01 4.58
S-AF KITTI (0.8M) 1.99 3.00 4.29

S-AF KITTI (3.2M) 1.88 2.85 4.22



Results on Davis data w/o ground truth

AF Sintel S-AF Davis




Combining S-AF with Self-supervised Optical Flow

Pre-training on Self-Autoflow

Self-supervised fine-tuning

L — ﬁphoto + Cf‘-JSITHz}()thL:sm()tz}th + wdistillﬁdistill

Multiframe fine-tuning

L = Z ,)/N—on (Wpseudo — Wn)

T

Stone et al. SMUREF: Self-Teaching Multi-Frame Unsupervised RAFT with Full-lmage Warping. CVPR 2021



Comparison of self-supervised learning approaches

Sintel Clean [4]

Sintel Final [4]

KITTI 2015 [28]

AEPE | AEPE | AEPE | AEPE (noc) | Fl-all (%) |
Method train test train test train train train test
EPIFlow [54] 3.94 7.00 5.08 8.51 5.56 2.56 — 16.95
UFlow [20] 3.01 5.21 4.09 6.50 2.84 1.96 9.39 11.13
SemiFlow [16] 1.30 — 2.46 - 3.35 — 11.12 —
SMUREF test [38] 1.99 — 2.80 - 2.01 1.42 6.72 —
S-AF+SS test 1.65 — 2.40 — 1.94 1.37 6.56 —
DDFlow [24] {2.92} 6.18 {3.98} 7.40 [5.72] [2.73] — 14.29
SelFlow [25] MP) [2.88] [6.56] {3.87} {6.57} [4.84] [2.40] — 14.19
UnsupSimFlow [15] {2.86} 5.92 {3.57} 6.92 [5.19] - — [13.38]
ARFlow [23] MP) {273} {4.49} {3.69} {5.67} [2.85] -~ - [11.79]
RealFlow [9] {1.34} — {2.38} - {2.16} — — —
SMUREF train [38] {1.71} 3.15 {2.58} 4.18 {2.00} {1.41} {6.42} 6.83
S-AF+SS train {1.51} 3.02 {2.30} 3.97 {1.96} {1.38} {6.26} 6.76



Visual results
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Visual results




Supervised fine-tuning on public benchmarks

Method Sintel Clean  Sintel Final KITTI
RealFlow [9] - - 4.63 %
SemiFlow (RAFT)* [16] 1.65 2.79 4.85 %
RAFT-1t [40] 1.55 2.90 4.31 %
RAFT-S-AF 1.42 2.75 4.12 %

Sun et al. Disentangling Architecture and Training for Optical Flow. ECCV 2022



Self-supervised AutoFlow
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Self-AutoFlow (1) Target data w/o GT

Self-supervised AutoFlow
Self-supervised learning + learning to render
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