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Preview

Motivation

Huaishao Luo et al. UniVL: A Unified Video and Language Pre-Training Model for Multimodal Understanding and Generation. arxiv, 2021.

Idea

Method

Results

• How can automatically combine various pretext task loss 
functions to assist learning of the target task?

• Use a meta-learning-based auxiliary learning framework.

• MELTR significantly 
outperforms the baselines 
across three backbone
models on five datasets.
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Motivation

Video Foundation Models

• Large-scale foundation models pretrained on huge amounts of data.

• Advantages of adaptability and generalizability to a wide range of downstream tasks.

• Pre-trained with a linear combination of various pretext tasks.
Ex) text-video alignment (VTC, VTM), MLM, MFM, and generation.
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Motivation

Huaishao Luo et al. UniVL: A Unified Video and Language Pre-Training Model for Multimodal Understanding and Generation. arxiv, 2021.

1. UniVL

Video Foundation Models
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Motivation

Jinpeng Wang et al. All in One: Exploring Unified Video-Language Pre-training. CVPR, 2023.

3. All-in-one

Video Foundation Models
2. Violet

Tsu-Jui Fu et al. Violet: End-to-end video-language transformers with masked visual-token modeling. arxiv, 2023.
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Motivation

Jinpeng Wang et al. All in One: Exploring Unified Video-Language Pre-training. CVPR, 2023.

3. All-in-one

Video Foundation Models
2. Violet

Tsu-Jui Fu et al. Violet: End-to-end video-language transformers with masked visual-token modeling. arxiv, 2023.

Then, can’t we task advantage of all the pretraining 
pretext task losses for fine-tuning as well?
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Idea

Auxiliary Learning

• Learns to adaptively leverage multiple auxiliary tasks to assist learning of 
the primary task (based on Meta-learning).

• The pretext task losses can be unified into a single auxiliary loss to be 
optimized in a way that helps the target downstream task.

Multi-task learning Auxiliary learning

Use multiple tasks? Yes Yes

Purpose Aims for generalization 
across tasks

Focues only on the primary task by 
taking advantage of auxiliary tasks
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Method

Meta Loss Transformer (MELTR)

• A plug-in module for meta auxiliary learning

• Adopt Transformer architecture.

• MELTR is optimized to help learning of the primary task. 
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Method

Meta Loss Transformer (MELTR)
• Calculate losses:

• Transform losses into a 
single unified loss:

• Regularization term:
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Method

Meta Loss Transformer (MELTR) • Objective function

• For      steps, update 
backbone foundation model:

• Then, update MELTR:
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Experiments

Quantitative results

Text-to-video retrieval on YouCook2

Text-to-video retrieval on MSRVTT

Video question answering

Video captioning on YouCook2

Multi-modal sentiment analysis on CMU-MOSI

Video captioning on MSRVTT
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Experiments

Analysis: Non-linear loss transformation
• Non-linearly correlated.

• have relatively higher 
values around                 . 
• Focus on reasonably challenging 

samples

• MELTR is more sensitive to                  
and                       than                .   
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Experiments

Analysis: Adaptive task re-weighting
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Conclusion

• MELTR learns to integrate various pretext task losses into one loss function
to boost the performance of the target downstream task.

• By plugging MELTR into various foundation models, our method 
outperformed video foundation models as well as task-specific models on a 
wide range of downstream tasks.

• We provide in-depth qualitative analyses of how MELTR adequately 
transforms individual loss functions and melts them into an effective unified 
loss function.


