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2Overview
● ISBNet is a novel framework for 3D point cloud instance segmentation (3DIS)
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● ISBNet is a novel framework for 3D point cloud instance segmentation (3DIS)
● We replace the clustering algorithm in existing 3DIS methods with a simple strategy to sample 

instance candidates
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● ISBNet is a novel framework for 3D point cloud instance segmentation (3DIS)
● We replace the clustering algorithm in existing 3DIS methods with a simple strategy to sample 

instance candidates



6Overview

Classification 

Sampling-based
Instance-wise

Encoder

Box-aware
Dynamic Convolution

Instance masks
 Point cloud

Point-wise
Predictor

Mask features 

Box prediction

Kernel prediction 

Box prediction

Encoder

D
ecoder

3D Backbone

M
LP

s

 n
ei

gh
bo

rs

Local Aggregation
M

ax
Po

ol

Local
Aggregation

IA
-FPS

Point Aggregator

Sampling-based Instance-wise Encoder

Local
Aggregation

IA
-FPS

Point Aggregator C
onv1

C
onv2

Instance kernels
Coord difference

Box difference

Mask features

Box-aware Dynamic Convolution

CC

● ISBNet is a novel framework for 3D point cloud instance segmentation (3DIS)
● We replace the clustering algorithm in existing 3DIS methods with a simple strategy to sample 

instance candidates
● We leverage the bounding box as a strong geometric cue to further boost performance
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● ISBNet is a novel framework for 3D point cloud instance segmentation (3DIS)
● We replace the clustering algorithm in existing 3DIS methods with a simple strategy to sample 

instance candidates
● We leverage the bounding box as a strong geometric cue to further boost performance
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# of layers Dimensions # of params AP AP50

1 (41,1) 41 45.7 67.1
2 (25,8,1) 216 53.6 72.1
2 (41,16,1) 688 53.9 72.3
2 (41,32,1) 1376 54.5 73.1

3 (41,16,16,1) 960 53.9 72.7
3 (41,32,16,1) 1696 54.2 72.8

Table 10. Ablation on the Box-aware Dynamic Convolution.

Chunk size Total samples K AP AP50 AP25

(256) 256 53.9 72.2 80.8
(384) 384 54.2 72.4 81.4
(512) 512 53.6 71.9 81.1

(128,128,128) 384 54.0 72.8 81.0
(192,128,64) 384 54.5 73.1 82.5

Table 11. Ablation on the sample chunk size of Iterative sampling.

convolution with the hidden channels of 32 gives the best
results. Using only a single layer of dynamic convolution
leads to a significant drop in performance. On the other hand,
adding too many layers, i.e., three layers yields worse results.
Reducing the number of hidden channels slightly decreases
the performance. Thanks to the additional geometric cue,
even with only 216 parameters of dynamic convolution, our
model can achieve 53.6/72.1 in AP/AP50, demonstrating the
robustness of the box-aware dynamic convolution.

Ablation on the chunk size of IA-FPS. We study different
designs of the sampling chunk size of IA-FPS in inference in
Tab. 11. The first three rows show the results when we sam-
ple K candidates at once. Increasing the number of samples
from 256 to 384 slightly improves the overall performance,
but at 512 samples, the result drops to 53.6 in AP. When
splitting K into smaller chunks of size (192,128,64) and
sampling points based on Eq. (1), the performance further
boosts to 54.5/73.1 in AP/AP50 in the last row.

Runtime Analysis. Fig. 4 reports the component and total
runtimes of ISBNet and 5 recent state-of-the-art methods
of 3DIS on the same Titan X GPU. All the methods can be
roughly separated into three main stages: backbone, instance
abstractor, and mask decoder. Our method is the fastest
method, with only 237ms in total runtime and 152/53/32
ms in backbone/instance abstractor/mask decoder stages.
Compared with the instance abstractors in PointGroup [21],
DyCo3D [16], and SoftGroup [35] which are based on clus-
tering, our instance abstractor based on our Point Aggregator
significantly reduce the runtime. Our mask decoder, which is
implemented by dynamic convolution, is the second fastest
among these methods. This proves the efficiency of our
proposed method.
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Figure 4. Components and total runtimes (in ms) and results in AP
of five previous methods and ISBNet on ScanNetV2 validation set.

Figure 5. A hard case on ScanNetV2 validation set where a fridge
is bounded by a counter. ISBNet and previous methods wrongly
merge points from these instances into a single object.

5. Conclusion

In this work, we have introduced the ISBNet , a concise
dynamic convolution-based approach to address the task of
3D point cloud instance segmentation. Considering the per-
formance of instance segmentation models relying on the
recall of candidate queries, we propose our Instance-aware
Farthest Point Sampling and Point Aggregator to efficiently
sample candidates in the 3D point cloud. Additionally, lever-
aging the 3D bounding box as auxiliary supervision and
a geometric cue for dynamic convolution further enhances
the accuracy of our model. Extensive experiments on Scan-
NetV2, S3DIS, and STPLS3D datasets show that our ap-
proach achieves robust and significant performance gain on
all datasets, surpassing state-of-the-art approaches in 3D in-
stance segmentation by large margins, i.e., +2.7, +2.4, +3.0
in AP on ScanNetV2, S3DIS and STPLS3D.

Our method is not without limitations. For example, our
instance-aware FPS does not guarantee to cover all instances
as it relies on the current instance prediction to make deci-
sions for point sampling. Our proposed axis-aligned bound-
ing box may not tightly fit the shape of complicated instances.
A hard case is shown in Fig. 5 where a fridge is bounded by
a counter. Our model cannot distinguish these points as they
share similar bounding boxes. Addressing these limitations
might lead to improvement in future work. Additionally, a
new study on improving dynamic convolution by leveraging
objects’ geometric structures such as their shapes and sizes
would be an interesting research topic.

8

ScanNetV2 S3DIS STPLS3D

● ISBNet is a novel framework for 3D point cloud instance segmentation (3DIS)
● We replace the clustering algorithm in existing 3DIS methods with a simple strategy to sample 

instance candidates
● We leverage the bounding box as a strong geometric cue to further boost performance
● Our method set new SOTA results on various datasets and retains fast inference time
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More details

ISBNet: a 3D Point Cloud Instance Segmentation 
Network with Instance-aware Sampling and Box-aware 

Dynamic Convolution 



103D Point Cloud Instance Segmentation (3DIS)

Given a 3D RGB point cloud (3D coordinate + RGB), we seek to obtain semantic and object
instance masks of specific categories of interest.

table chair floor
𝐾: # object instances, 
𝑁: # points, 𝐶: # categories
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Where 3D point cloud data can complement the information provided by 2D images

● Robot navigation in indoor environment 

● Autonomous driving in outdoor environment

● Augmented reality applications 

● Objects in 3D have much higher variations in appearance and shape than 2D images.

● 3D point clouds are unevenly distributed, i.e., dense near object surface and sparse elsewhere

è It is not trivial to apply 2D instance Segmentation approaches to 3DIS 

Challenges

Applications



12A Typical Approach for 3DIS: DyCo3D [1]

[1] DyCo3D: Robust Instance Segmentation of 3D Point Clouds through Dynamic Convolution (CVPR 2021)
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[1] DyCo3D: Robust Instance Segmentation of 3D Point Clouds through Dynamic Convolution (CVPR 2021)

1. Use a 3D backbone to extract pointwise features

2. Predict instance masks:

a. Group points into clusters for object candidates
b. Generate an instance kernel for each object candidate



16A Typical Approach for 3DIS: DyCo3D [1]

[1] DyCo3D: Robust Instance Segmentation of 3D Point Clouds through Dynamic Convolution (CVPR 2021)

1. Use a 3D backbone to extract pointwise features

2. Predict instance masks:

a. Group points into clusters for object candidates
b. Generate an instance kernel for each object candidate

c. Dynamic convolution: Convolve each generated kernel with mask features to obtain a binary 

instance mask for each object



17Limitations of DyCo3D



18Limitations of DyCo3D

Mis-grouping points when similar objects are adjacent 

è Low-recall object proposals



19Limitations of DyCo3D

Appearance feature is not distinct enough to 
distinguish objects of the same class



20Our ISBNet
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Replace clustering by instance-aware sampling: 

Each sampled point represents a candidate object 
to obtain instance mask
è high-recall object proposals
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Propose Box-aware Dynamic Convolution:

Enhance appearance feature with geometric cue, i.e., object bounding box



22Instance-aware Sampling (IA-FPS)
Goal: sample a set of 𝐾 candidate points from initial 𝑁 points (𝑲 ≪ 𝑵) to maximize the 
instance recall rate.



23Instance-aware Sampling (IA-FPS)
Goal: sample a set of 𝐾 candidate points from initial 𝑁 points (𝑲 ≪ 𝑵) to maximize the 
instance recall rate.

Input 
point cloud



24Instance-aware Sampling (IA-FPS)
Goal: sample a set of 𝐾 candidate points from initial 𝑁 points (𝑲 ≪ 𝑵) to maximize the 
instance recall rate.

● Only sample from foreground points

Predicted
foreground points

Input 
point cloud



25Instance-aware Sampling (IA-FPS)
Goal: sample a set of 𝐾 candidate points from initial 𝑁 points (𝑲 ≪ 𝑵) to maximize the 
instance recall rate.

● Only sample from foreground points
● Multiple-rounds sampling and object mask prediction: Avoid points belonging to 

previous predicted instance masks

Predicted
foreground points

Input 
point cloud



26Instance-aware Sampling (IA-FPS)
Goal: sample a set of 𝐾 candidate points from initial 𝑁 points (𝑲 ≪ 𝑵) to maximize the 
instance recall rate.

● Only sample from foreground points
● Multiple-rounds sampling and object mask prediction: Avoid points belonging to 

previous predicted instance masks

Predicted
foreground points

Input 
point cloud



27Instance-aware Sampling (IA-FPS)
Goal: sample a set of 𝐾 candidate points from initial 𝑁 points (𝑲 ≪ 𝑵) to maximize the 
instance recall rate.

● Only sample from foreground points
● Multiple-rounds sampling and object mask prediction: Avoid points belonging to 

previous predicted instance masks

Predicted masks after 
sampling 1st round

Predicted
foreground points

Input 
point cloud



28Instance-aware Sampling (IA-FPS)
Goal: sample a set of 𝐾 candidate points from initial 𝑁 points (𝑲 ≪ 𝑵) to maximize the 
instance recall rate.

● Only sample from foreground points
● Multiple-rounds sampling and object mask prediction: Avoid points belonging to 

previous predicted instance masks

Predicted masks after 
sampling 1st round

Predicted
foreground points

Input 
point cloud

Predicted masks after 
sampling 2nd round



29Instance-aware Sampling (IA-FPS)
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Intuition: an object candidate (2) “attracts” 
points (1) predicting similar boxes 



31Box-aware Dynamic Convolution

Appearance feature
Box difference

Instance kernel

Box difference: difference in box size and box center between 
pointwise predicted box and object candidate’s predicted box
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32Experiments

● Datasets: 

○ Indoor: ScanNetV2 (18 classes), 

S3DIS  (13 classes)

○ Outdoor: STPLS3D (15 classes)

STPLS3D

ScanNetV2● Metrics: 

○ AP, AP50 (Average Precision) on 

ScanNetV2 and STPLS3D

○ mPrec (mean precision), mRec

(mean recall) on S3DIS
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ScanNetV2
(indoor)

S3DIS
(indoor)

STPLS3D
(outdoor)

AP AP50 mPrec mRec AP AP50

GSPN CVPR 19 19.3 37.8 36.0 28.7 - -

PointGroup CVPR 20 34.8 51.7 61.9 62.1 23.3 38.5

DyCo3D CVPR 21 40.6 61.0 64.3 64.2 - -

HAIS ICCV 21 43.5 64.4 71.1 65.0 35.1 46.7

SoftGroup CVPR 22 46.0 67.6 73.6 66.6 46.2 61.8

Di&Co3D ECCV 22 47.7 67.2 63.9 67.2 - -

PointInst3D ECCV 22 45.6 63.7 73.1 65.2 - -

DKNet ECCV 22 50.8 66.7 70.8 65.3 - -

Ours CVPR 23 54.5 73.1 74.2 72.7 49.2 64.0

Comparison with SOTA
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+13.9
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AP AP50 mPrec mRec AP AP50

GSPN CVPR 19 19.3 37.8 36.0 28.7 - -

PointGroup CVPR 20 34.8 51.7 61.9 62.1 23.3 38.5

DyCo3D CVPR 21 40.6 61.0 64.3 64.2 - -

HAIS ICCV 21 43.5 64.4 71.1 65.0 35.1 46.7

SoftGroup CVPR 22 46.0 67.6 73.6 66.6 46.2 61.8
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PointInst3D ECCV 22 45.6 63.7 73.1 65.2 - -

DKNet ECCV 22 50.8 66.7 70.8 65.3 - -

Ours CVPR 23 54.5 73.1 74.2 72.7 49.2 64.0

Comparison with SOTA

+9.9

+4.3 +5.5 +0.6 +5.5
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ScanNetV2
(indoor)

S3DIS
(indoor)

STPLS3D
(outdoor)

AP AP50 mPrec mRec AP AP50

GSPN CVPR 19 19.3 37.8 36.0 28.7 - -

PointGroup CVPR 20 34.8 51.7 61.9 62.1 23.3 38.5

DyCo3D CVPR 21 40.6 61.0 64.3 64.2 - -

HAIS ICCV 21 43.5 64.4 71.1 65.0 35.1 46.7

SoftGroup CVPR 22 46.0 67.6 73.6 66.6 46.2 61.8

Di&Co3D ECCV 22 47.7 67.2 63.9 67.2 - -

PointInst3D ECCV 22 45.6 63.7 73.1 65.2 - -

DKNet ECCV 22 50.8 66.7 70.8 65.3 - -

Ours CVPR 23 54.5 73.1 74.2 72.7 49.2 64.0

Comparison with SOTA

+4.3 +5.5 +0.6 +5.5 +3.0 +2.2
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41Ablation Study on ScanNetV2

● IA-FPS: Instance-aware Sampling
● BA-DyCo: Box-aware Dynamic Convolution
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● IA-FPS: Instance-aware Sampling
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● IA-FPS: Instance-aware Sampling
● BA-DyCo: Box-aware Dynamic Convolution

+6.6 +6.7 +5.4
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● IA-FPS: Instance-aware Sampling
● BA-DyCo: Box-aware Dynamic Convolution

+6.6 +6.7 +5.4

# of layers Dimensions # of params AP AP50

1 (41,1) 41 45.7 67.1
2 (25,8,1) 216 53.6 72.1
2 (41,16,1) 688 53.9 72.3
2 (41,32,1) 1376 54.5 73.1

3 (41,16,16,1) 960 53.9 72.7
3 (41,32,16,1) 1696 54.2 72.8

Table 10. Ablation on the Box-aware Dynamic Convolution.

Chunk size Total samples K AP AP50 AP25

(256) 256 53.9 72.2 80.8
(384) 384 54.2 72.4 81.4
(512) 512 53.6 71.9 81.1

(128,128,128) 384 54.0 72.8 81.0
(192,128,64) 384 54.5 73.1 82.5

Table 11. Ablation on the sample chunk size of Iterative sampling.

convolution with the hidden channels of 32 gives the best
results. Using only a single layer of dynamic convolution
leads to a significant drop in performance. On the other hand,
adding too many layers, i.e., three layers yields worse results.
Reducing the number of hidden channels slightly decreases
the performance. Thanks to the additional geometric cue,
even with only 216 parameters of dynamic convolution, our
model can achieve 53.6/72.1 in AP/AP50, demonstrating the
robustness of the box-aware dynamic convolution.

Ablation on the chunk size of IA-FPS. We study different
designs of the sampling chunk size of IA-FPS in inference in
Tab. 11. The first three rows show the results when we sam-
ple K candidates at once. Increasing the number of samples
from 256 to 384 slightly improves the overall performance,
but at 512 samples, the result drops to 53.6 in AP. When
splitting K into smaller chunks of size (192,128,64) and
sampling points based on Eq. (1), the performance further
boosts to 54.5/73.1 in AP/AP50 in the last row.

Runtime Analysis. Fig. 4 reports the component and total
runtimes of ISBNet and 5 recent state-of-the-art methods
of 3DIS on the same Titan X GPU. All the methods can be
roughly separated into three main stages: backbone, instance
abstractor, and mask decoder. Our method is the fastest
method, with only 237ms in total runtime and 152/53/32
ms in backbone/instance abstractor/mask decoder stages.
Compared with the instance abstractors in PointGroup [21],
DyCo3D [16], and SoftGroup [35] which are based on clus-
tering, our instance abstractor based on our Point Aggregator
significantly reduce the runtime. Our mask decoder, which is
implemented by dynamic convolution, is the second fastest
among these methods. This proves the efficiency of our
proposed method.

Figure 4. Components and total runtimes (in ms) and results in AP
of five previous methods and ISBNet on ScanNetV2 validation set.

Figure 5. A hard case on ScanNetV2 validation set where a fridge
is bounded by a counter. ISBNet and previous methods wrongly
merge points from these instances into a single object.

5. Conclusion

In this work, we have introduced the ISBNet , a concise
dynamic convolution-based approach to address the task of
3D point cloud instance segmentation. Considering the per-
formance of instance segmentation models relying on the
recall of candidate queries, we propose our Instance-aware
Farthest Point Sampling and Point Aggregator to efficiently
sample candidates in the 3D point cloud. Additionally, lever-
aging the 3D bounding box as auxiliary supervision and
a geometric cue for dynamic convolution further enhances
the accuracy of our model. Extensive experiments on Scan-
NetV2, S3DIS, and STPLS3D datasets show that our ap-
proach achieves robust and significant performance gain on
all datasets, surpassing state-of-the-art approaches in 3D in-
stance segmentation by large margins, i.e., +2.7, +2.4, +3.0
in AP on ScanNetV2, S3DIS and STPLS3D.

Our method is not without limitations. For example, our
instance-aware FPS does not guarantee to cover all instances
as it relies on the current instance prediction to make deci-
sions for point sampling. Our proposed axis-aligned bound-
ing box may not tightly fit the shape of complicated instances.
A hard case is shown in Fig. 5 where a fridge is bounded by
a counter. Our model cannot distinguish these points as they
share similar bounding boxes. Addressing these limitations
might lead to improvement in future work. Additionally, a
new study on improving dynamic convolution by leveraging
objects’ geometric structures such as their shapes and sizes
would be an interesting research topic.

8

Multiple rounds sampling



45Ablation Study on ScanNetV2

● IA-FPS: Instance-aware Sampling
● BA-DyCo: Box-aware Dynamic Convolution

# of layers Dimensions # of params AP AP50

1 (41,1) 41 45.7 67.1
2 (25,8,1) 216 53.6 72.1
2 (41,16,1) 688 53.9 72.3
2 (41,32,1) 1376 54.5 73.1

3 (41,16,16,1) 960 53.9 72.7
3 (41,32,16,1) 1696 54.2 72.8

Table 10. Ablation on the Box-aware Dynamic Convolution.

Chunk size Total samples K AP AP50 AP25

(256) 256 53.9 72.2 80.8
(384) 384 54.2 72.4 81.4
(512) 512 53.6 71.9 81.1

(128,128,128) 384 54.0 72.8 81.0
(192,128,64) 384 54.5 73.1 82.5

Table 11. Ablation on the sample chunk size of Iterative sampling.

convolution with the hidden channels of 32 gives the best
results. Using only a single layer of dynamic convolution
leads to a significant drop in performance. On the other hand,
adding too many layers, i.e., three layers yields worse results.
Reducing the number of hidden channels slightly decreases
the performance. Thanks to the additional geometric cue,
even with only 216 parameters of dynamic convolution, our
model can achieve 53.6/72.1 in AP/AP50, demonstrating the
robustness of the box-aware dynamic convolution.

Ablation on the chunk size of IA-FPS. We study different
designs of the sampling chunk size of IA-FPS in inference in
Tab. 11. The first three rows show the results when we sam-
ple K candidates at once. Increasing the number of samples
from 256 to 384 slightly improves the overall performance,
but at 512 samples, the result drops to 53.6 in AP. When
splitting K into smaller chunks of size (192,128,64) and
sampling points based on Eq. (1), the performance further
boosts to 54.5/73.1 in AP/AP50 in the last row.

Runtime Analysis. Fig. 4 reports the component and total
runtimes of ISBNet and 5 recent state-of-the-art methods
of 3DIS on the same Titan X GPU. All the methods can be
roughly separated into three main stages: backbone, instance
abstractor, and mask decoder. Our method is the fastest
method, with only 237ms in total runtime and 152/53/32
ms in backbone/instance abstractor/mask decoder stages.
Compared with the instance abstractors in PointGroup [21],
DyCo3D [16], and SoftGroup [35] which are based on clus-
tering, our instance abstractor based on our Point Aggregator
significantly reduce the runtime. Our mask decoder, which is
implemented by dynamic convolution, is the second fastest
among these methods. This proves the efficiency of our
proposed method.

Figure 4. Components and total runtimes (in ms) and results in AP
of five previous methods and ISBNet on ScanNetV2 validation set.

Figure 5. A hard case on ScanNetV2 validation set where a fridge
is bounded by a counter. ISBNet and previous methods wrongly
merge points from these instances into a single object.

5. Conclusion

In this work, we have introduced the ISBNet , a concise
dynamic convolution-based approach to address the task of
3D point cloud instance segmentation. Considering the per-
formance of instance segmentation models relying on the
recall of candidate queries, we propose our Instance-aware
Farthest Point Sampling and Point Aggregator to efficiently
sample candidates in the 3D point cloud. Additionally, lever-
aging the 3D bounding box as auxiliary supervision and
a geometric cue for dynamic convolution further enhances
the accuracy of our model. Extensive experiments on Scan-
NetV2, S3DIS, and STPLS3D datasets show that our ap-
proach achieves robust and significant performance gain on
all datasets, surpassing state-of-the-art approaches in 3D in-
stance segmentation by large margins, i.e., +2.7, +2.4, +3.0
in AP on ScanNetV2, S3DIS and STPLS3D.

Our method is not without limitations. For example, our
instance-aware FPS does not guarantee to cover all instances
as it relies on the current instance prediction to make deci-
sions for point sampling. Our proposed axis-aligned bound-
ing box may not tightly fit the shape of complicated instances.
A hard case is shown in Fig. 5 where a fridge is bounded by
a counter. Our model cannot distinguish these points as they
share similar bounding boxes. Addressing these limitations
might lead to improvement in future work. Additionally, a
new study on improving dynamic convolution by leveraging
objects’ geometric structures such as their shapes and sizes
would be an interesting research topic.
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# of layers Dimensions # of params AP AP50

1 (41,1) 41 45.7 67.1
2 (25,8,1) 216 53.6 72.1
2 (41,16,1) 688 53.9 72.3
2 (41,32,1) 1376 54.5 73.1

3 (41,16,16,1) 960 53.9 72.7
3 (41,32,16,1) 1696 54.2 72.8

Table 10. Ablation on the Box-aware Dynamic Convolution.

Chunk size Total samples K AP AP50 AP25

(256) 256 53.9 72.2 80.8
(384) 384 54.2 72.4 81.4
(512) 512 53.6 71.9 81.1

(128,128,128) 384 54.0 72.8 81.0
(192,128,64) 384 54.5 73.1 82.5

Table 11. Ablation on the sample chunk size of Iterative sampling.

convolution with the hidden channels of 32 gives the best
results. Using only a single layer of dynamic convolution
leads to a significant drop in performance. On the other hand,
adding too many layers, i.e., three layers yields worse results.
Reducing the number of hidden channels slightly decreases
the performance. Thanks to the additional geometric cue,
even with only 216 parameters of dynamic convolution, our
model can achieve 53.6/72.1 in AP/AP50, demonstrating the
robustness of the box-aware dynamic convolution.

Ablation on the chunk size of IA-FPS. We study different
designs of the sampling chunk size of IA-FPS in inference in
Tab. 11. The first three rows show the results when we sam-
ple K candidates at once. Increasing the number of samples
from 256 to 384 slightly improves the overall performance,
but at 512 samples, the result drops to 53.6 in AP. When
splitting K into smaller chunks of size (192,128,64) and
sampling points based on Eq. (1), the performance further
boosts to 54.5/73.1 in AP/AP50 in the last row.

Runtime Analysis. Fig. 4 reports the component and total
runtimes of ISBNet and 5 recent state-of-the-art methods
of 3DIS on the same Titan X GPU. All the methods can be
roughly separated into three main stages: backbone, instance
abstractor, and mask decoder. Our method is the fastest
method, with only 237ms in total runtime and 152/53/32
ms in backbone/instance abstractor/mask decoder stages.
Compared with the instance abstractors in PointGroup [21],
DyCo3D [16], and SoftGroup [35] which are based on clus-
tering, our instance abstractor based on our Point Aggregator
significantly reduce the runtime. Our mask decoder, which is
implemented by dynamic convolution, is the second fastest
among these methods. This proves the efficiency of our
proposed method.
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Figure 5. A hard case on ScanNetV2 validation set where a fridge
is bounded by a counter. ISBNet and previous methods wrongly
merge points from these instances into a single object.

5. Conclusion

In this work, we have introduced the ISBNet , a concise
dynamic convolution-based approach to address the task of
3D point cloud instance segmentation. Considering the per-
formance of instance segmentation models relying on the
recall of candidate queries, we propose our Instance-aware
Farthest Point Sampling and Point Aggregator to efficiently
sample candidates in the 3D point cloud. Additionally, lever-
aging the 3D bounding box as auxiliary supervision and
a geometric cue for dynamic convolution further enhances
the accuracy of our model. Extensive experiments on Scan-
NetV2, S3DIS, and STPLS3D datasets show that our ap-
proach achieves robust and significant performance gain on
all datasets, surpassing state-of-the-art approaches in 3D in-
stance segmentation by large margins, i.e., +2.7, +2.4, +3.0
in AP on ScanNetV2, S3DIS and STPLS3D.

Our method is not without limitations. For example, our
instance-aware FPS does not guarantee to cover all instances
as it relies on the current instance prediction to make deci-
sions for point sampling. Our proposed axis-aligned bound-
ing box may not tightly fit the shape of complicated instances.
A hard case is shown in Fig. 5 where a fridge is bounded by
a counter. Our model cannot distinguish these points as they
share similar bounding boxes. Addressing these limitations
might lead to improvement in future work. Additionally, a
new study on improving dynamic convolution by leveraging
objects’ geometric structures such as their shapes and sizes
would be an interesting research topic.

8

Runtime Analysis

è Our method achieves SOTA performance while being the fastest runtime.
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That’s it!

Want more? Check out our code
https://github.com/VinAIResearch/ISBNet

https://github.com/VinAIResearch/ISBNet

