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® We introduce how to compact and accelerate BNN further by Sparse Kernel Selection, abbreviated as Sparks.

® Our work is build based on a previously revealed phenomenon (by SNNI!) that the 3X3 binary kernels in successful

BNNs are nearly power-law distributed, their values being mostly clustered into a small portion of codewords.

See the difference between Figure (a) and (b).

® In SNN, we observe that the sub-codebook is easy to degenerate during training (see Figure (¢)), since codewords

tend to be repetitive when being updated independently.

® While in our Sparks (Figure (d)), the diversity of codewords preserves by selection-based learning.
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(a) Codebook constructed with sub-vectors
(multi-channel codewords)
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(b) Codebook constructed with kernels
(single-channel codewords) (ours)
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[1] Sub-bit Neural Networks: Learning to Compress and Accelerate Binary Neural Networks. ICCV 2021.
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(K = 3 for 3X3 binary kernels)

Compacting Binary Neural Networks by Sparse Kernel Selection

Property 1 We denote B = {—1,+1}%*X as the codebook of binary kernels. For each w € RE*X  the binary kernel w
can be derived by a grouping process:

We compact BNNs by recasting the grouping as

w = sign(w) = argmin ||u — w||s.

u€cB

uel

W = arg min ||u — w||z, s.z. UCB.

(1)

Matrix representation, where P is a permutation matrix and V is fixed as a certain initial selection,

W = argmin |u — w||2, s.t. U = BPV P € Py,

ueclU

We learn the permutation matrix P by Gumbel-Sinkhorn, denoted as Pg.

Forward pass

Backward pass

P,.,; = Hungarian(Pgs),
U = BPrealV7
W, = argmin ||lu — w,||2,
uclU

g(we;) =~ {g(wc’i)’

g(u;)

g(Preal) s
g(Pgs) ~

= (_17 1) 3
0, otherwise,

if We,;

E : g(wc) * ]Iuj:a.rg min,, oy |lu—we|2»

B'gU)V',
g(Prea,l), (our PSTE, will be introduced)

I Binarizing weights

Sub-codebook selection
U = BP.V

1

= arg min ||lu — w||2
uelU

0,

I S VIR M
. {g(wc,i), if we; € (—1,1)

otherwise,
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How Gumbel-Sinkhorn in our setting works?
Given a matrix X € RY*YN(N = |B|), the Sinkhorn operator over S(X) is proceeded as follow,

S%(X) = exp(X), 5)
SH(X) =T (T/(S*71(X))) , 6)
S(X) = lim S*(X), ™

where 7,.(X) = X @ (X1y1}) and 7.(X) = X @ (1514 X) are the row-wise and column-wise normalization operators,
and @ denotes the element-wise division. For stability purpose, both normalization operators are calculated in the log domain
in practice. The work by [41] proved that S(X') belongs to the Birkhoff polytope—the set of doubly stochastic matrices.

By substituting the Gumbel-Sinkhorn matrix, we characterize the sub-codebook selection as U = BS*((X +¢€)/7)V
X € RVXN 1 (0% ’k‘ iz)o 8(X) = Jlim Sk(X)
S%(X) = exp(X) gk(X) 7o (T (S*1(X))) . o0

Learnable matrix,

o LA doubly stochastic matrix: nonnegative, each of the
randomly initialized. |

| Tows sums to 1, and each of the columns sums to 1.

: i Only these parameters are actually calculated.
S%(X /1) = exp(X /T) i forward

T QFmmmmmmm oo ® Pos=SHX/r) L1 " Pea = Hungarian(Pss)
Approximated permutation matrix. For i backward  gyputted permutation matrix. A 0/1 matrix, each
gradient propagation, not a 0/1 matrix. ! (PSTE) of the rows and columns has only a single 1.
Y k
o 0 Jim SH(X/7) or lim S(X/r)

k—o0

Ideal permutation matrix. A 0/1 matrix, each
of the rows and columns has only a single 1.
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Sub-codebook selection - 0 S%X)=exp(X) k +00 o
U = BP.aV X €eR Q — Q 8(X) = Jlim SH(X)
- U . SH(x )= Te (T(S*71(X)) : : : :
_____________ Learnable matrix, i A doubly stochastic matrix: nonnegative,
g(Pea) = BTg(U)VT A randomly initialized. ; i each row or column sums to 1.
1 g(u;) ‘ |
I : : Only these parameters are actually calculated.
l 8°(X/r) = exp(X /) | | forward ’ ‘
TO - . Pgs = Sk(X/T) ,,,,4 7777777777777 Prea = Hungarlan(Pss)

Approximated permutation matrix. For | 02kWard  oueutted permutation 0/1 matrix. Each

> gradient propagation, not a 0/1 matrix. i (PSTE) row or column has only a single 1.
)~ {8, if wei € (=1,1) lim S*(X/7) or lim S(X/7)
e = {57 Cvene G O i S0/ o
w
Ideal permutation matrix. A 0/1 matrix, each of
Forward pass ----- » Backward pass (by PSTE) the rows and columns has only a single 1.

PSTE: Approximate the gradient of the Gumbel-Sinkhorn matrix P;g with P.,;. We have the following theorem to
guarantee the convergence for sufficiently large k and small 7.

Lemma 1 For sufficiently large k and small T, we define the entropy of a doubly-stochastic matrix P as h(P) = — Ei, ; P; jlogP; j,

and denote the rate of convergence for the Sinkhorn operator as v (0 < r < 1)°. There exists a convergence series s, (sr — 0 when
T — 07) that satisfies

|| Preat — Pasl|3 = O(s2 + ). (18)

Theorem 1 Assume that the training objective f w.r.t. Pgg is L-smooth, and the stochastic gradient of Pyca) is bounded by E||g(Prea)||3 <
0. Denote the rate of convergence for the Sinkhorn operator as v (0 < r < 1) and the stationary point as Pgg. Let the learning rate of

PSTE be n = wn‘h = \/ f(PGS) f(PGS) . For a uniformly chosen u from the iterates { P2, - - -
the probabilzty pt T} +1, it holds in expectatzon over the stochasticity and the selection of u :

EVS(w)|} = 0 <a\/ FBG) ZIeS) 4 (o2 + )) . (19)

, PL .}, concretely uw = P~ with
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® Comparisons of top-1 and top-5 accuracies with state-of-the-art methods on ImageNet based on ResNet-18.

Compacting Binary Neural Networks by Sparse Kernel Selection

Method Bit-width Accuracy (%) Storage BOPs
(W/A) Top-1 Top-5 (Mbit) (x10%)

Full-precision 32/32 69.6 89.2 3515 107.2 1x)
BNN [16] 1/1 42.2 69.2 11.032x) 1.70 (63 %)
XNOR-Net [37] 1/1 51.2 73.2 11.032%) 1.70 63 %)
Bi-RealNet [31] 171 56.4 79.5 11.0 32x) 1.68 (64 %)
IR-Net [36] 1/1 58.1 80.0 11.0 32x) 1.68 (64 %)
LNS [10] 171 59.4 81.7 11.0 32x) 1.68 (64x)
RBNN [26] 1/1 59.9 81.9 11.032%) 1.68 (64 %)
Ensemble-BNN [52] (1/1)x6 61.0 - 65.9 (53%) 10.6 (10x%)
ABC-Net [28] (1/1)x52 65.0 85.9 274.5 (13x) 42.5 2.5%)
Real-to-Bin [33] 1/1 65.4 86.2 11.032%) 1.68 (64 %)
ReActNet [32] L/ 65.9 86.4 11.0 32x) 1.68 (64 %)
SLBF [24] 0.55/1 57.7 80.2 6.05 (58 %) 0.92 (117x)
SLBF [24] 0.31/1 52.5 76.1 3.41 (103 %) 0.98 (110x)
FleXOR [25] 0.80/1 62.4 83.0 8.80 (40x) 1.68 (64x)
FleXOR [25] 0.60/1 59.8 81.9 6.60 (53x) 1.68 (64 %)
Sparks (ours) 0.78/1 65.5 86.2 8.57 41x) 1.22 (88x)
Sparks (ours) 0.67/1 65.0 86.0 7.32 48x) 0.88 (122x)
Sparks (ours) 0.56/1 64.3 85.6 6.10 (58x) 0.50 (214x)

® Results when extending our Sparks to wider or deeper models.

Bit-width Accuracy (%) Storage BOPs
Method Backbone (W/A) Top-1  Top-S  (Mbi)  (x10%
ReActNet [32] ResNet-18 1/1 65.9 86.4 11.0 1.68
; ResNet-18
Sparks-wide (+ABC-Net [28]) (0.56/1)%x3 66.7 86.9 18.3 1.50
Sparks-deep ResNet-34 0.56/1 67.6 87.5 11.7 0.96

Sparks-deep ResNet-34 0.44/1 66.4 86.7 94 0.58
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® Trade-off between performance and complexity on ImageNet,
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