
Yikai Wang1, Wenbing Huang2, Yinpeng Dong1,3, Fuchun Sun1, Anbang Yao4

1BNRist Center, State Key Lab on Intelligent Technology and Systems, 
Department of Computer Science and Technology, Tsinghua University

2Gaoling School of Artificial Intelligence, Renmin University of China    3RealAI    4Intel Labs China 

Compacting Binary Neural Networks by Sparse Kernel Selection 

Primary Contact: Yikai Wang (yikaiw@outlook.com)



Compacting Binary Neural Networks by Sparse Kernel Selection 

l We introduce how to compact and accelerate BNN further by Sparse Kernel Selection, abbreviated as Sparks.

l Our work is build based on a previously revealed phenomenon (by SNN[1]) that the 3×3 binary kernels in successful

BNNs are nearly power-law distributed, their values being mostly clustered into a small portion of codewords.

See the difference between Figure (a) and (b).

l In SNN, we observe that the sub-codebook is easy to degenerate during training (see Figure (c)), since codewords

tend to be repetitive when being updated independently.

l While in our Sparks (Figure (d)), the diversity of codewords preserves by selection-based learning.

[1] Sub-bit Neural Networks: Learning to Compress and Accelerate Binary Neural Networks. ICCV 2021.

Codeword index Codeword index

(a) Codebook constructed with sub-vectors 
(multi-channel codewords)

(b) Codebook constructed with kernels 
(single-channel codewords) (ours)

Top-! codewords 32 64 128 256

Total percentage 61.6% 75.4% 90.2% 96.5%

Top-! codewords 32 64 128 256

Total percentage 7.6% 14.7% 28.5% 55.3%
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(d) Selection-based optimization
for binary codewords (ours)
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(c) Product quantization-based

optimization for binary codewords
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forward

backward
(PSTE)

A doubly stochastic matrix: nonnegative, 
each row or column sums to 1.

Outputted permutation 0/1 matrix. Each  
row or column has only a single 1.

Approximated permutation matrix. For 
gradient propagation, not a 0/1 matrix.

Ideal permutation matrix. A 0/1 matrix, each of 
the rows and columns has only a single 1.

or

Learnable matrix, 
randomly initialized.

Binarizing weights

Sub-codebook selection

 Forward pass Backward pass (by PSTE)

Inference

Only these parameters are actually calculated.

(𝐾 = 3 for 3×3 binary kernels)

We compact BNNs by recasting the grouping as 

Matrix representation, where 𝑷 is a permutation matrix and 𝑽 is fixed as a certain initial selection,

We learn the permutation matrix 𝑷 by Gumbel-Sinkhorn, denoted as 𝑷!".

Forward pass

Backward pass

(our PSTE, will be introduced)
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forward

backward
(PSTE)

A doubly stochastic matrix: nonnegative, each of the 
rows sums to 1, and each of the columns sums to 1.

Outputted permutation matrix. A 0/1 matrix, each 
of the rows and columns has only a single 1.

Approximated permutation matrix. For 
gradient propagation, not a 0/1 matrix.

Ideal permutation matrix. A 0/1 matrix, each 
of the rows and columns has only a single 1.

or

Learnable matrix, 
randomly initialized.

Only these parameters are actually calculated.

How Gumbel-Sinkhorn in our setting works?

By substituting the Gumbel-Sinkhorn matrix, we characterize the sub-codebook selection as
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PSTE: Approximate the gradient of the Gumbel-Sinkhorn matrix 𝑷!" with 𝑷#$%&. We have the following theorem to 
guarantee the convergence for  sufficiently large 𝑘 and small 𝜏.

forward

backward
(PSTE)

A doubly stochastic matrix: nonnegative, 
each row or column sums to 1.

Outputted permutation 0/1 matrix. Each  
row or column has only a single 1.

Approximated permutation matrix. For 
gradient propagation, not a 0/1 matrix.

Ideal permutation matrix. A 0/1 matrix, each of 
the rows and columns has only a single 1.

or

Learnable matrix, 
randomly initialized.

Binarizing weights

Sub-codebook selection

 Forward pass Backward pass (by PSTE)

Inference

Only these parameters are actually calculated.



l Comparisons of top-1 and top-5 accuracies with state-of-the-art methods on ImageNet based on ResNet-18.

l Results when extending our Sparks to wider or deeper models.
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l Trade-off between performance and complexity on ImageNet,
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l Ablation studies on ImageNet with ResNet-18, l Codewords selection during training,
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