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Introduction PURDUE

Knowledge Distillation

Knowledge distillation (KD) is a popular model compression technique
that seeks to transfer valuable information from a cumbersome teacher
network to a similar-capacity or a compact student network.
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Introduction PURDUE

Knowledge Distillation

However, one basic assumption that KD considers is the availability of a
Transfer Dataset (teacher’s training data), used to query the teacher
and the student, to conduct KD.

[
L Distill
—"’ Teacher
< : l |
Transfer
Knowledge Knowledge
e
— S R <
l, | Transfer

Liu et al., Data-Free Knowledge Transfer: A Survey, arXiv.2112.15278, 2021.


https://arxiv.org/abs/2112.15278

Introduction PURDUE
Data-Free Knowledge Distillation (DFKD)

Nonetheless, in real-world situations, the transfer set is not easily
available once the teacher model is trained using them. Therefore, works
have been explored in conducting KD in the absence of the training data.
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Performance Improvements
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‘Goal of Data-Free Knowledge Distillation PURDUE
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Adversarial DFKD PURDUE
Knowledge-Acquisition

In the typical Adversarial DFKD setup, the student update objective with the
generated pseudo samples, i.e., the Knowledge-Acquisition task, is formulated as:

min £ aqq(0s) = minE; | L(To-(2), Ses(2))]
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Adversarial DFKD PURDUE
Knowledge-Retention

Moreover, to alleviate the distribution drift during KD in the adversarial setting, a
memory buffer of previously encountered sampes is maintained, and samples
are replayed to help the student recall the knowledge. Therefore, performing

Knowledge-Retention as follows:

min L pet (93) = minE:ﬁm [»C(%T (im)a 898 (im»]
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Adversarial DFKD PURDUE

Student update objective:

Helin Lacq(0s) + LRret(0s)

However, the objective above, attempts to simultaneously optimizes Knowledge-Retention
and Knowledge-Acquisition, but does not seek to align the objectives, which leaves them to
potentially interfere with one another.
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Proposed Method

e The proposed meta-learning inspired approach, seeks to align the two tasks.,
e \Xe take cues from Model-Agnostic Meta-learning (MAML).

e Typically, MAML-like methods are framed as a bi-level optimization problem, where the
objective is defined as:

min Louter (&I'g min )Cinner (wj Dtrain) 9 Dtest)
W w



Learning to Retain while Acquiring PURDUE

Proposed Method

o Likewise, we pose Knowledge-Acquisition and Knowledge-Retention as meta-train and
meta-test, respectively.

e We perform a single gradient descent step on the Knowledge-Acquisition objective, using
samples from current distribution, and then optimize the student parameters on the
Knowledge-Retention objective, using the samples in the memory.

e Hence, the overall student learning objective is defined as follows:

Helin »CAcq(eS) + £Ret (efS) - I%Hl £Acq(98) + »CRet(HS — QVEAcq (68))
S S
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Implicit Gradient Matching

Analyzing the objective using Taylor's expansion.
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Overview of the proposed method
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Learning evolution improvements

80 ClFABlOO

75F .
=70 -
>
@ 65 l
5
S 60f .
< —— MB-DFKD

31 —— Ours (w/ Memory Bank) |

50 T00 200 300 200

Epochs

(0]
o

CIFAR100

PURDUE

UNIVERSITY

Accuracy (%)
~ ~
e

[¢))]
Ul
T

(o))
(@]
@

PRE-DFKD
—— Ours (w/ Generative Replay)

T00

200
Epochs

300

200




Learning to Retain while Acquiring

Learning evolution improvements
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Improvements across replay schemes
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