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Standard perception and prediction requires costly labels
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Credit: Waymo Open Challenges



Point Cloud Forecasting
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4D Forecasting: Sequential Forecasting of 100,000 Points 
Weng et al., CVPR’21

Self-supervised Point Cloud Prediction using 3D Spatial-temporal Convolutional Networks 
Mersch et al., CORL’22

Historical LiDAR Sweeps Future Point Clouds

Predict



The difficulty of predicting points
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Points lie at the intersection of sensor rays and environment



The difficulty of predicting points
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Rays change with change in sensor extrinsics and intrinsics



The difficulty of predicting points
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We should make predictions about our environment, not our sensor!



w/ differentiable volumetric rendering
4D Occupancy Forecasting
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Qualitative results on nuScenes
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Groundtruth SPFNet S2Net Ours (Point clouds) Ours (Occupancy)Raytracing

Non-learned raytracing baseline is much stronger than SOTA. We improve upon it by 
recovering dynamic/evolving scene elements.
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Traditional setup

Chamfer Distance

Evaluation protocol
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Evaluation protocol
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Traditional setup

Proposed setup

Ray queries
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Significant performance improvement upon SOTAs
Evaluation on nuScenes
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Metrics in-line with qualitative results: SOTA << Raytracing < Ours
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Use predicted occupancy to render point clouds for different sensors.

Potential applications: Changing intrinsics



Significant performance improvement upon SOTA
Evaluation on KITTI-Odometry
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Potential applications: Changing extrinsics

Use predicted occupancy to render dense depth maps from novel views (camera).

Reference RGB frame, t = 0s Novel-view depth synthesis
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Summary

• Point cloud forecasting = 4D occupancy forecasting + sensor extrinsics and intrinsics


• Disentanglement results in dramatic improvement, while also opening up cross-sensor applications


• Benchmarking protocol should evaluate underlying geometry with rays, not uncorrelated points

tarashakhurana/4d-occ-forecasting


