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Overview

RGB video reveals the blood volume pulse
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Collecting ground truth is challenging!



Overview

Input Prediction
Video Clip [T,W,H,C] Waveform [T]

{ Neural Network }

The pulse has a sparse frequency domain (periodic) -
with energy in a known bandwidth (40-180 bpm).

Our non-contrastive method (SiNC) successfully
trains models without ground truth!
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Why Camera-Based Vitals?

Contact Devices / Cameras \

e Expensive e Cheap
e Specialized e Ubiquitous
e Uncomfortable e Multiple Vitals

e Infrequent \ /
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RPNet

2.5

2.0 4

154

1.04

0.5 1

Waveform

0.0 1

—0.5

-1.0

=157

Oximeter

2.0

154

1.0

0.5

Waveform

0.0

-0.5

-1.0

47.0 475 480 485 490 495
Time (s)



https://docs.google.com/file/d/1x9ExcGs1Zp3crSkWKP9K000voS5bp0aM/preview

Supervised Learning for rPPG

How: Regress waveforms from PPG
e Predict a real value for each frame

Challenge: Simultaneous video + PPG
e Data limited to lab

Solution: Unsupervised learning V\/V\A/V
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Contrastive Unsupervised Learning
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e Attract similar pairs
e Repel dissimilar pairs




SINC: Signal estimation via Non-Contrastive Learning

Idea: The pulse has a sparse frequency domain (periodic) with
energy in a known bandwidth (40-180 bpm).
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Losses
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DDPM

- High heart rates
- 86 subjects
- Strong movement

- Challenging

rPPG Datasets

O

PURE UBFC-rPPG
- Low heart rates - High heart rates
- 10 subjects - 43 subjects
- Controlled movement - Minor movement

Non-rPPG Data

HKBU-MARs

- Meant for face PAD
- No ground truth
- 7 cameras

- 6 lighting conditions
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UBFC-rPPG

PURE
e <1 bpm MAE on UBFC and PURE!
e (Competes with supervised methods
e Removes dicrotic notch

DDPM e Learns own phase
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Non-Contrastive Unsupervised Learning of
Physiological Signals From Video

https://github.com/CVRL/SiNC-rPPG
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