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Motivation

Point cloud classifiers are vulnerable to adversarial point clouds.
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Overview

We propose PointCert, the first certified defense that has deterministic
robustness guarantees against adversarial point clouds. Moreover, we
propose methods to optimize the performance of PointCert in multiple

application scenarios.
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Motivation

1. Existing empirical defenses cannot provide formal guarantees and are often
broken by advanced and adaptive attacks [1].

2. Existing certified defenses [2, 3] produce incorrect robustness guarantees with
some probability, 1.¢., their certified robustness guarantees are probabilistic.
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Our work

We propose PointCert, the first certified defense that has deterministic
robustness guarantees against adversarial point clouds.

PointCert certifiably predicts the same label for a point cloud when the number

of points arbitrarily added, deleted, modified by an attacker 1s less than the
certified perturbation size.
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Our work

Optimize PointCert 1n three scenarios, in which base point cloud classifier f1s
trained by the model provider differently and/or used by a customer differently.
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Base Point Cloud Classifier
Model provider Customer




JUNE 18-22,2023 & [l 1@ &
i

(VPR At

M= .'.'.
VANCOUVER, CANADA

Key i1dea

Step 1. Dividing a point cloud into m disjoint subpoint clouds using
cryptographic hash function (e.g., MD)J).

d
A Hash

T
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Key idea
Step 2. Building an ensemble point cloud classifier 4.
h predicts label y for a point cloud P if: M, (P) > max;.,(M;(P) + I(y > 1))

where M;(P) indicates label frequency for label /.
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Theoretical Analysis

Derive the largest certified perturbation size ¢#(P) such that our PointCert 1s
guaranteed to predicts the same label y for P and its adversarially perturbed
version:

t(P) = LMy(P)—maXz;éy(Mz(P)+I[(y>l))J

D 2T

7 1s 1 for point addition and deletion attacks, while 1t 1s 2 for point modification
and perturbation attacks.



Application Scenario 1

Naive application of PointCert.

Standard training

with point clouds
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Application Scenario 11

The model provider trains f on sub-point clouds to optimize the performance
of PointCert.
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Application Scenario 111

The customer trains a Point Completion Network [4] using unlabeled/
partially labeled data and adds it betfore f to improve the accuracy for
subpoint clouds.
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Application Scenario 111
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Experimental results

Dataset: ModelNet40[5] and ScanObjectNN|[6]. We split the training point
clouds into two balanced halves. One 1s used for the model provider to train

base point cloud classifiers £, and the other 1s used for a customer to train a
PCN 1n Scenario I11.

Compared methods: Randomized smoothing [2], PointGuard[3].

Certified Accuracy@t: The fraction of testing point clouds whose certified
perturbation sizes are at least # and whose labels are correctly predicted.
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Make each method have similar certified accuracy under no attacks.
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(d) Point perturbation attacks

Comparing the certified accuracy of different defenses. (Scenario II)
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Different Scenarios
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(a) Point addition/deletion (b) Point modification/perturbation
attacks attacks

Comparing the certified accuracy 1n three application scenarios
under different attacks.
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Ablation Study
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Impact of (a) the number of sub-point clouds m. (b)
different 7. (Scenario II)



Ablation Study
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Code available at https://github.com/jzhang538/PointCert.



