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Introduction: Video Diffusion Models

Video diffusion models have recently shown great potential, yet they are difficult to be scaled-up

• Challenge 1. It requires significant memory and computation [Ho et al., 2022]

• Challenge 2. It often requires tremendous computation costs for generating longer videos [Voleti et al., 2022]
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Motivation: Efficient Video Diffusion Models?

Can we enjoy the power of diffusion models in an efficient manner for video generation?

Idea: Encode videos as succinct, non-3D latents and train the diffusion model in this latent space!
• (Autoencoder) We propose a new autoencoder of a mapping of video → triplane latents

• (Diffusion models) We propose a video diffusion model architecture without using 3D convolutions
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Method: Autoencoder

Autoencoder: Factorizes a given video (cubic tensor) into three 2D “image-like” latent vectors 

• encodes common contents in videos (e.g., background), and the other two vectors encode the motion of videos

• Since we avoid using cubic latent vectors, it enables compute-efficient diffusion model design architecture 
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Method: Diffusion Model Architecture

Diffusion model: Based on popular 2D convolutional U-Net architectures used for images

• It does not require any 3D convolutional layer, hence much more compute-efficient

• Conditioned on the last video “clip”, our model generates the next “clip” for generating longer videos
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Method: Diffusion Model Training Objective

Objective: Joint training of unconditional (initial clip) and conditional (future clips) generation

• For unconditional modeling, the condition is replaced with 0.

• Trained with the sum of below two denoising objectives:
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Method: Sampling Procedure

Sampling: Autoregressively generate video “clips” (rather than the video frame one-by-one)

• Initial clip: Sampled from a prior Gaussian distribution only

• Future clips: Conditioned with a given condition (prior clip)
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Experiment: Quantitative Results

Quantitative result: Outperforms prior video generation methods in popular benchmarks

• Both on FVD (short/long video clips) and IS

8



Experiment: Qualitative Comparison with Baselines

Qualitative result: Shows more realistic synthesis results
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Analysis: Efficiency

Compared with VDM, our method shows strong memory-/compute- efficiency

• e.g.) PVDM can achieve 17.6x better compute-efficiency on inference than VDM (with the same sampling setup)
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Analysis: Encoding Quality

Our autoencoder architecture is beneficial in encoding videos as compact latents

• Compared with popular 2N CNN or Video Transformers, our model shows much better quality 
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Summary: PVDM

Summary: We propose latent video diffusion models for scalable video synthesis

We propose PVDM = Projected-latent Video Diffusion Models
1. Achieves state-of-the-art performance on various video generation benchmarks
2. Can generate long videos of high-resolution frames without demanding recourses
3. Shows strong memory-/compute-efficiency on both training/inference

Future possible directions (but not limited to):
1. Diffusion model architecture more specialized for our triplane latent space 
2. Better structural latent space for representing videos 
3. Applications – e.g., video inpainting
4. Method to be combined with “image” foundation models (e.g., stable-diffusion)
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