Video Probabilistic Diffusion Models
In Projected Latent Space

Sihyun Yu?!, Kihyuk Sohn?, Subin Kim?!, Jinwoo Shin!
1Korea Advanced Institute of Science and Technology (KAIST)
2Google Research

> %Iﬂﬂllll[ﬂllll]lllllﬂll'llﬂl

JUNE 18-22, 2023

KAIST Google Research CVPR‘f

Introduction: Video Diffusion Models

Video diffusion models have recently shown great potential, yet they are difficult to be scaled-up
« Challenge 1. It requires significant memory and computation [Ho et al., 2022]

« Challenge 2. It often requires tremendous computation costs for generating longer videos [Voleti et al,, 2022]

Al %
R ['
_-A 'l”‘: ‘7"
a7
|'-
7 !

b LA TS ey 2.

[Ho et al., 2022] Video Diffusion Models, NeurlPS 2022.
[Voleti et al., 2022] MCVD- Masked Condifional Video Diffusion Model for Prediction, Generation, and Interpolation, NeurlPS 2022.

L™~

Motivation: Efficient Video Diffusion Models?

=) Can we enjoy the power of diffusion models in an efficient manner for video generation?
Idea: Encode videos as succinct, non-3D latents and train the diffusion model in this latent space!

(Autoencoder) We propose a new autoencoder of a mapping of video — triplane latents
(Diffusion models) We propose a video diffusion model architecture without using 3D convolutions

é N[o h
Generate the initial clip x!
Latent space
Video 1 Diffusion 1
X =1 Encoder |=P]Z > process » Z 1
Z d 0
Denoising autoencoder ¢,
— Generate the future clip x*
Vid 2 o @0
1aeo Vi Y ¢
X£4- Decoder | <= Z - Zi 1 @Dwm - Zr ’ I—1
zf |:] @zé’lD Zt 1 @ ZO 1
B E
@ : Concatentation
Upsample Downsample resid Attention T . .
D residual block ual block u layer @ : Concatenation
_ J y

Method: Autoencoder

Autoencoder: Factorizes a given video (cubic tensor) into three 2D “image-like” latent vectors
« z®° encodes common contents in videos (e.g., background), and the other two vectors encode the motion of videos

« Since we avoid using cubic latent vectors, it enables compute-efficient diffusion model design architecture

Projection -
network

Video
encoder | =%

Video
= | decoder

Projection]
network

>

3D latent vector viewed from
each of the three axes
3D latent vector 2D latent vectors

Method: Diffusion Model Architecture

Diffusion model: Based on popular 2D convolutional U-Net architectures used for images

It does not require any 3D convolutional layer, hence much more compute-efficient

Conditioned on the last video “clip”, our model generates the next “clip” for generating longer videos

Video
Encoder

Video
Decoder

—

é) Generate the initial clip
Latent space

1 Diffusion 1

Zg > process > Zp] 1
Denoising autoencoder €o
Generate the future clip

l | £]

ZO - 'Zt— 1 , 0—1
Upsample Downsample Attention
residual block residual block u layer € : Concatenation

\ (shared) (shared) J \

Method: Diffusion Model Training Objective

Objective: Joint training of unconditional (initial clip) and conditional (future clips) generation
For unconditional modeling, the condition is replaced with O.

Trained with the sum of below two denoising objectives:

E(x}),xg),e,t [)‘IIG - eg(zf, z(l)?t)“g + (1= A)|le— 69(Z37 0, t)”%]

Conditional term Unconditional term

Method: Sampling Procedure

Sampling: Autoregressively generate video “clips” (rather than the video frame one-by-one)
* Initial clip: Sampled from a prior Gaussian distribution only

* Future clips: Conditioned with a given condition (prior clip)

Algorithm 1 projected latent video diffusion model (PVDM)

1: for/ =1to Ldo > Iteratively generate the video clips x*.
2 Sample the random noise z5 ~ p(zr).
3 fort =T toldo
4. if / = 1 then
5 Compute the unconditional score €; = €g(z:, 0, 1).
6: else
y - Compute the conditional score €; = €g(z¢, zg_l, L)
8: end if
9: Sample € ~ N(0,,1,) and compute z; _; = ﬁ (zf - 1B—t5ft et) + o;€.
10: end for
11: Decode the ¢-th clip x* = gy (25).
12: end for

13: Output the generated video [x*, ..., x"].

Experiment: Quantitative Results

Quantitative result: Outperforms prior video generation methods in popular benchmarks
Both on FVD (short/long video clips) and IS

Table 1. FVDi6 and FVD125 values (lower values are better) of video generation models
on UCF-101 and SkyTimelapse. Bolds indicate the best results, and we mark our method
as blue. We report FVD values of other baselines obtained by the reference (StyleGAN-
V [47]). N/M-s denotes the model is evaluated with the DDIM sampler [51] with N steps

(for the initial clip) and M steps (for future clips).

UCF-101 SkyTimelapse
Method FVDi6 \L FVDi2s \l, FVDi6 \l, FVDi2s \L
VideoGPT [65] 2880.6 N/A 222.7 N/A
MoCoGAN [57] 2886.8 3679.0 206.6 575.9
+ StyleGAN?2 [28] 1821.4 2311.3 85.88 272.8
MoCoGAN-HD [55] 1729.6 2606.5 164.1 878.1
DIGAN [67] 1630.2 2293.7 83.11 196.7
StyleGAN-V [47] 1431.0 1773.4 79.52 197.0
PVDM-S (ours); 100/20-s 457.4 902.2 71.46 159.9
PVDM-L (ours); 200/200-s 398.9 639.7 61.70 137.2
PVDM-L (ours); 400/400-s 343.6 648.4 5541 125.2

Table 2. IS values (higher values are better) of
video generation models on UCF-101. Bolds
indicate the best results and subscripts denote
the standard deviations. * denotes the model
is trained on train+test split, otherwise the
method uses only the train split for training.

Method IS 1

MoCoGAN [57] 12.42+0.07
ProgressiveVGAN [1] 14.5640.05
LDVD-GAN [23] 22.91+0.19
VideoGPT [65] 24.69+0.30
TGANV2 [43] 28.87+0.67
StyleGAN-V* [47] 23.9440.73
DIGAN [67] 29.71+0.53
VDM* [21] 57.00+0.62
TATS [12] 57.63+0.24

PVDM-L (ours) 74.40+1.25

Experiment: Qualitative Comparison with Baselines

Qualitative result: Shows more realistic synthesis results

i Tl
IR, e =
‘pﬂ...W:Mﬂhr » -‘-w'?ﬁ""m
N
e

L

DIGAN

R I e R
4'3 M 1), .

‘.

StyleGAN-V

PVDM

Experiment: Qualitative Comparison with Baselines

Qualitative result: Shows more realistic synthesis results

DIGAN

StyleGAN-V

PVDM

10

Analysis: Efficiency

Compared with VDM, our method shows strong memory-/compute- efficiency

e.g.) PVDM can achieve 17.6x better compute-efficiency on inference than VDM (with the same sampling setup)

Table 5. Maximum batch size for training and time (s), memory
(GB) for synthesizing a 256 x 256 resolution video measured with a
single NVIDIA 3090Ti 24GB GPU. N/A denotes the values cannot
be measured due to the out-of-memory problem. /N/M -s denotes
the model is evaluated with the DDIM sampler [51] with NV steps
(for the initial clip) and M steps (for future clips).

Train Inference (time/memory)

Length — 16 16 128
TATS [12] 0 84.8/18.7 434/19.2
VideoGPT [65] 0 139/15.2 N/A
VDM [21]; 100/20-s 0 113/11.1 N/A
PVDM-L (ours); 200/200-s 2 20.4/5.22 166/5.22
PVDM-L (ours); 400/400-s 2 40.9/5.22 328/5.22
PVDM-S (ours); 100/20-s 7 7.88/4.33 31.3/4.33

11

Analysis: Encoding Quality

Our autoencoder architecture is beneficial in encoding videos as compact latents

* Compared with popular 2N CNN or Video Transformers, our model shows much better quality

Table 4. Quantitative evaluation results between reconstruction
from the autoencoder of PVDM and the real videos. Table 7. Ablation study of our projected autoencoder.

Backbone Proj. VQ. dim(z) zshape PSNRT R-FVD|]

UCF-101 SkyTimelapse
)) 2D CNN - v 32,768 3D 25.23 147.5

Train Test Train Test
2D CNN - v 8,192 3D 21.89 559.9
R-FVD | 2587 3226 17.37 36.52* Timesformer - v 8,192 3D 24.65 134.9
PSNR 27.34 2699 3433 32.68* Timesformer v v 8,192 2D 24.73 63.34
Timesformer v - 8,192 2D 26.99 32.26

* Evaluated with 196 samples due to the smaller test set size (196) than 2,048.

Summary: PVDM

Summary: We propose latent video diffusion models for scalable video synthesis

We propose PVDM = Projected-latent Video Diffusion Models
1. Achieves state-of-the-art performance on various video generation benchmarks
2. Can generate long videos of high-resolution frames without demanding recourses
3. Shows strong memory-/compute-efficiency on both training/inference

Future possible directions (but not limited to):
1. Diffusion model architecture more specialized for our triplane latent space
2. Better structural latent space for representing videos
3. Applications - e.g., video inpainting
4. Method to be combined with “image” foundation models (e.g., stable-diffusion)

13

